Green synthesis of 2-aryl-4-phenyl-quınazolıne derıvatives promoted by lactıc acıd

Authors

  • Belgheis Adrom Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Nourallah Hazeri Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Malek Taher Maghsoodlou Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Mojtaba Lashkari Faculty of Science and Engineering, Velayat University, Iranshahr, Iran
  • Maryam Fatahpour Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

DOI:

https://doi.org/10.20450/mjcce.2017.1137

Keywords:

Green protocol, Quinazoline derivatives, Multi-component reaction, Lactic acid, Solvent-free conditions

Abstract

An environmentally benign three-component synthetic method is described for the construction of 2-aryl-4-phenylquinazoline derivatives from the reaction between aldehydes, ammonium acetate, and 2-aminobenzophenone in the presence of lactic acid in a solvent-less media. The benefits of the reaction were good yields, a simple procedure, simple starting materials short reaction time, easy work-up, and cleaner reaction profiles.

References

(a) X. Xiao, S. Antony, Y. Pommier, M. Cushman, Total Synthesis and Biological Evaluation of 22-Hydroxyacuminatine, J. Med. Chem. 49, 1408–1412 (2006); (b) M. A. Cinelli, A. Morrell, T. S. Dexheimer, E. S. Scher, Y. Pommier, M. Cushman, Design, Synthesis, and Biological Evaluation of 14-Substituted Aromathecins as Topoisomerase I Inhibitors, J. Med. Chem. 51, 4609 (2008); (c) S. Oh, S. B. Park, A design strategy for drug-like polyheterocycles with privileged substructures for discovery of specific small-molecule modulators, Chem. Commun. 47, 12754–12761 (2011).

(a) A. Antonello, P. Hrelia, A. Leonardi, G. Marucci, M. Rosini, A. Tarozzi, V. Tumiatti, C. Melchiorre, Design, Synthesis and Biological Evaluation of Prazosin-Related Derivatives as Multipotent Compounds, J. Med. Chem. 48, 28–31 (2005); (b) M. Rosini, A. Antonello, A. Cavalli, M. L. Bolognesi, A. Minarini, G. Marucci, E. Poggesi, A. Leonardi, C. Melchiorre, Prazosin-Related Compounds. Effect of Transforming the Piperazinyl-quinazoline Moiety into an Aminomethyltetra-hydroacridine System on the Affinity for α1-Adrenoreceptors, J. Med. Chem. 46, 4895–4903 (2003); (c) L. Wilson, Traceless Solid-Phase Synthesis of 2,4-Diaminoquinazolines, Org. Lett. 3, 585–588 (2001).

(a) T. H. Oude Munnink, E. G. E. de Vries, S. R. Vedelaar, H. Timmer-Bosscha, C. P. Schröder, A. H. Brouwers, M. N. Lub-de Hooge, Lapatinib and 17AAG Reduce 89Zr-Trastuzumab-F(ab′)2 Uptake in SKBR3 Tumor Xenografts, Mol. Pharmaceutics, 9, 2995–3002 (2012); (b) S. Mahboobi, A. Sellmer, M. Winkler, E. Eichhorn, H. Pongratz, T. Ciossek, T. Baer, T. Maier, T. Beckers, Novel Chimeric Histone Deacetylase Inhibitors: A Series of Lapatinib Hybrides as Potent Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), and Histone Deacetylase Activity, J. Med. Chem. 53, 8546–8555 (2010).

E. A. Henderson, V. Bavetsias, D. S. Theti, S. C. Wilson, R. Clauss, A. L. Jackman, Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase, Bioorg. Med. Chem. 14, 5020–5042 (2006).

(a) T.-C. Chien, C.-S. Chen, F.-H.Yu, J.-W. Chern, Nucleosides XI. Synthesis and Antiviral Evaluation of 5′-Alkylthio-5′-deoxy Quinazolinone Nucleoside Derivatives as S-Adenosyl-L-homocysteine Analogs, Chem. Pharm. Bull. 52, 1422–1426 (2004); (b) T. Herget, M. Freitag, M. Morbitzer, R. Kupfer, T. Stamminger, M. Marschall, Novel Chemical Class of pUL97 Protein Kinase-Specific Inhibitors with Strong Anticytomegaloviral Activity, Antimicrob. Agents Chemother. 48, 4154–4162 (2004).

K. Waisser, J. Gregor, H. Dostal, J. Kunes, L. Kubicova, V. Klimesova, Kaustova, Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3-benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones, J. Farmaco 56, 803–807 (2001).

S. Madapa, Z. Tusi, A. Mishra, K. Srivastava, S. K. Pandey, R. Tripathi, S. K. Puri, S. Batra, Search for new pharmacophores for antimalarial activity. Part II: Synthesis and antimalarial activity of new 6-ureido-4-anilinoquinazolines, Bioorg. Med. Chem. 17, 222–234 (2009).

J. Zhang, D. Zhu, C. Yu, C. Wan, Z. Wang, A Simple and Efficient Approach to the Synthesis of 2-Phenylquinazolines via sp3 C−H Functionalization, Org. Lett. 12, 2841–2843 (2010).

R. Sarma, D. Prajapati, Microwave-promoted efficient synthesis of dihydroquinazolines, Green Chem. 13, 718–722 (2011).

Z.-H. Zhang, X.-N. Zhang, L.-P. Mo, Y.-X. Li, F.-P. Ma, Catalyst-free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent, Green Chem. 14, 1502–1506 (2012).

B. Adrom, M. T. Maghsoodlou, N. Hazeri, M. Lashkari, Solvent-free synthesis of 1-(benzothiazolylamino) methyl-2-naphthols with maltose as green catalyst, Res. Chem. Intermed. 41, 7553–7560 (2015).

B. Adrom, N. Hazeri, M. Lashkari, M. T. Maghsoodlou, A general and green chemistry approach for the synthesis of 2,4,6-triarylpyridine, Biointerface Res. Appl. Chem. 6, 1406–1410 (2016).

M. Fatahpour, N. Hazeri, M. T. Maghsoodlou, M. Lashkari, Lactic Acid: A New Application as an Efficient Catalyst for the Green One-Pot Synthesis of 2-Hydroxy-12-aryl-8, 9, 10, 12-Tetrahydrobenzo[a]xanthene-11-one and 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]xanthen-11-one Analogs, Iran. J. Sci. Technol. Trans. Sci. 2016, DOI: 10.1007/s40995-016-0064-1

K. Karnakar, J. Shankar, S. Narayana Murthy, K. Ramesh, Y. V. D. Nageswar, An Efficient Protocol for the Synthesis of 2-Phenylquinazolines Catalyzed by Ceric Ammonium Nitrate (CAN), Synlett 1089–1096 (2011).

S. K. Panja, S. Saha, Recyclable, magnetic ionic liquid bmim[FeCl4]-catalyzed, multicomponent, solvent-free, green synthesis of quinazolines, RSC Adv., 3, 14495–14500 (2013).

W. Szczepankiewicz, P. Wagner, M. Danicki, J. Suwinski, Transformation of 5,5-diaryl-4,5-dihydro-1,2,4-oxadiazoles to 4-arylquinazolines, Tetrahedron Lett. 44 2015–2017 (2003).

M. Dabiri, P. Salehi, M. Bahramnejad, Ecofriendly and Efficient One-Pot Procedure for the Synthesis of Quinazoline Derivatives Catalyzed by an Acidic Ionic Liquid Under Aerobic Oxidation Conditions, Synth. Commun., 40, 3214–3225 (2010).

Downloads

Published

2017-12-05

How to Cite

Adrom, B., Hazeri, N., Maghsoodlou, M. T., Lashkari, M., & Fatahpour, M. (2017). Green synthesis of 2-aryl-4-phenyl-quınazolıne derıvatives promoted by lactıc acıd. Macedonian Journal of Chemistry and Chemical Engineering, 36(2), 223–228. https://doi.org/10.20450/mjcce.2017.1137

Issue

Section

Organic Chemistry