Microwave-assisted synthesis of biologically active amide derivatives of naphthenic acids under neat conditions

Ljubica Grbović, Bojana Radovan Vasiljević, Ksenija Pavlović, Timea Hajnal-Jafari, Simonida Đurić, Mirjana Popsavin, Slavko Kevrešan


Within the field of green chemistry, a noticeable results were obtained in the solvent-free synthesis of amide derivatives of naphthenic acids under microwave irradiation. Naphthenic acid amides, anilides, and morpholides were synthesized directly from free carboxylic acids and amines in the absence of solvent and catalyst under high-temperature heating in a closed-vessel system of microwave reactor. With this new and efficient method, different primary, secondary, and tertiary amide derivatives of naphthenic acids were obtained in good to excellent yields. Synthesized derivatives were assayed as plant rooting agents for their stimulative effects on the formation of adventitious roots in sunflower cuttings and susceptibility for growth stimulation of Pseudomonas sp. strains.


green chemistry, naphthenic acid amides; solvent-free synthesis; plant rooting agents, bacterial proliferation

Full Text:



E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Reviews 38, 606–631 (2009). DOI: 10.1039/B701677H

R. K. Mylavarapu, G. C. M. Kondaiah, N. Kolla, R. Veeramalla, P. Koilkonda, A. Bhattacharya, R. Bandichhor, Boric acid catalyzed amidation in the synthesis of active pharmaceutical ingredients, Org. Process Res. Dev. 11, 1065–1068 (2007). DOI: 10.1021/op700098w

T. Nabe, Y. Kuriyama, N. Mizutani, S. Shibayama, A. Hiromoto, M. Fujii, K. Tanaka, S. Kohno, Inhibition of hematopoietic prostaglandin D synthase improves allergic nasal blockage in Guinea pigs, Prostaglandins Other Lipid Med. 95, 27–34 (2011).

DOI: 10.1016/j.prostaglandins.2011.05.001

N. M. Tsutahara, Y. S. Weems, J. A. Arreguin-Arevalo, T. M. Nett, M. E. LaPorte, J. Uchida, J. Pang, T. McBride, R. D. Randel, C. W. Weems, Effects of endocannabinoid 1 and 2 (CB1; CB2) receptor agonist on luteal weight, circulating progesterone, luteal mRNA for luteinizing hormone (LH) receptors, and luteal unoccupied and occupied receptors for LH in vivo in ewes, Prostaglandins Other Lipid Med. 95, 17–24 (2011). DOI: 10.1016/j.prostaglandins.2010.11.002

N. Kushwaha, R. K. Saini, S. K. S. Kushwaha, Synthesis of some amide derivatives and their biological activity, Int. J. Chem. Tech. Res. 3, 203–209 (2011).

V. Raparti, T. Chitre, K. Bothra, V. Kumar, S. Dangre, C. Khachane, S. Gore, B. Deshmane, Novel 4-(morpholine-4-yl)-N'-(arylidene)benzohydrazides: synthesis, antimycobacterial activity and QSAR investigations, Eur. J. Med. Chem. 44, 3954–3960 (2009).

DOI: 10.1016/j.ejmech.2009.04.023

A. P. G. Nikalje, M. Patel, Y. Ranadeb, R. Deshpande, D. Rajani, Design and synthesis of novel N-substituted morpholino benzamide derivatives as antimicrobial agents, Der Pharmacia Sinica 3, 462–469 (2012).

C. L. Allen, A. R. Chhatwal, J. M. J. Williams, Direct amide formation from unactivated carboxylic acids and amines, Chem. Commun. 48, 666–668 (2012).

DOI: 10.1039/c1cc15210f

L. Perreux, A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic consideratons, Tetrahedron 57, 9199–9223 (2001).

DOI: 10.1016/S0040-4020(01)00905-X

L. Perreux, A. Loupy, M. Delmotte, Microwave effects in solvent-free esters aminolysis, Tetrahedron 59, 2185–2189 (2003). DOI: 10.1016/S0040-4020(03)00151-0

D. O. Jang, D. J. Park, J. Kim, A mild and efficient procedure for the preparation of acid chlorides from carboxylic acids, Tetrahedron Lett. 40, 5323–5326 (1999). DOI: 10.1016/S0040-4039(99)00967-3

S.-Y. Han, Y.-A. Kim, Recent development of peptide coupling reagents in organic synthesis, Tetrahedron 60, 2447–2467 (2004). DOI: 10.1016/j.tet.2004.01.020

A. Khalafi-Nezhad, A. Parhami, M. N. S. Rad, A. Zarea, Efficient method for the direct preparation of amides from carboxylic acids using tosyl chloride under solvent-free conditions, Tetrahedron Lett. 46, 6879–6882 (2005). DOI: 10.1016/j.tetlet.2005.08.021

C. A. G. N. Montalbetti, V. Falque, Amide bond formation and peptide coupling, Tetrahedron 61, 10827–10852 (2005). DOI: 10.1016/j.tet.2005.08.031

D. Mijin, S. Petrović, Microwaves in organic chemistry and organic chemical technology, Hem. Ind. 59, 224–229 (2005). DOI: 537-962:547+663/.665

P. Prieto, A. de la Hoz, A. Diaz-Ortiz, A. M. Rodriguez, Understanding MAOS through computational chemistry, Chemical Society Reviews 46, 431–451 (2017).

DOI: 10.1039/c6cs00393a

C. O. Kappe, D. Dallinger, S. S. Murphree, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols, Wiley-VCH, Weinheim, 2009.

S. Chandrasekhar, M. Takhi, G. Uma, Solvent free N-alkyl and N-arylimides preparation from anhydrides catalyzed by TaCl5•silica gel, Tetrahedron Lett. 38, 8089–8092 (1997). DOI: S0040-4039(97)10116-2

R. S. Varma, K. P. Naicker, Solvent-free synthesis of amides from non-enolizable esters and amines using microwave irradiation, Tetrahedron Lett. 40, 6177–6180 (1999). DOI: 10.1016/S0040-4039(99)01209-5

N. S. Cho, H. J. Jeon, D. U. Heo, Microwave-acceleration of carboxamides formation using water soluble condensing agent DMT-MM or DCC, J. Korean Chem. Soc. 56, 658–660 (2012).

DOI : 10.5012/jkcs.2012.56.5.658

C. S. Reddy, A. Nagaraj, P. Jalapathi, Zirconyl chloride promoted highly efficient solid phase synthesis of amide derivatives, Chinese Chem. Lett. 18, 1213–1217 (2007). DOI: 10.1016/j.cclet.2007.08.011

P. Sharma, N. Kaur, P. Sharma, R. Sirohi, D. Kishore, Microwave assisted facile one pot synthesis of novel 5-carboxamido substituted analogues of 1,4-benzodiazepin-2-one of medicinal interest, Bull. Chem. Soc. Ethiop. 27, 301–307 (2013).

DOI: 10.4314/bcse.v27i2.16

C. Ferroud, M. Godart, S. Ung, H. Borderies, A. Guy, Microwave-assisted solvent-free synthesis of N-acetamides by amidation or aminolysis, Tetrahedron Lett. 49, 3004–3008 (2008).

DOI: 10.1016/j.tetlet.2008.02.170

L. J. Gooßen, D. M. Ohlmann, P. P. Lange, The thermal amidation of carboxylic acids revisited, Synthesis 1, 160-164 (2009). DOI: 10.1055/s-0028-1083277

L. Perreux, A. Loupy, F. Volatron, Solvent-free preparation of amides from acids and primary amines under microwave irradiaton, Tetrahedron 58, 2155–2162 (2002).

E. Gelens, L. Smeets, L. A. J. M. Sliedregt, B. J. van Steen, C. G. Kruse, R. Leurs, R. V. A. Orru, An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves, Tetrahedron Lett. 46, 3751–3754 (2005). DOI: 10.1016/j.tetlet.2005.03.146

V. Ćirin-Novta, S. Kevrešan, K. Kuhajda, J. Kandrač, Lj. Radić, P. Rodić, Optimization of petroleum acid isolation from lower oil fractions of Vojvodina "Velebit" oil, Acta Period. Technol. 34, 49–54 (2003).

DOI: 10.2298/APT0334049C

L. R. Nascimento, L. M. C. Reboucas, L. Koike, F. de A. M. Reis, A. L. Soldan, J. R. Cerqueira, A. J. Marsaioli, Acidic biomarkers from Albacora oils, Campos basin, Brazil, Org. Geochem. 30, 1175–1191 (1999).

T.-P. Fan, Characterization of naphthenic acids in petroleum by fast atom bombardment mass spectrometry, Energy and Fuels 5, 371–375 (1991).

DOI: 10.1021/ef00027a003

J. A. Brient, P. J. Wessner, M. N. Doyle, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 1995.

V. Ćirin-Novta, K. Kuhajda, S. Kevrešan, J. Kandrač, Lj. Radić, Biolgical activity and structure of natural petroleum acids from lower oil fractions of "Velebit" oil, Acta Period. Technol. 33, 135–141 (2002).

DOI: 10.2298/APT0233135C

V. Ćirin-Novta, S. Kevrešan, K. Kuhajda, J. Kandrač, Lj. Radić, P. Rodić, Structural and physiological properties of natural petroleum acids from middle oil fractions of "Kelebija" oil, Acta Period. Technol. 35, 87–93 (2004). DOI: 10.2298/APT0435087C

Lj. Grbović, K. Pavlović, B. Prekodravac, K. Kuhajda, S. Kevrešan, M. Popsavin, J. Milić, V. Ćirin-Novta, Fractionation of complex mixtures of naphthenic acids, their characterization and biological activity, J. Serb. Chem. Soc. 77, 147–157 (2012).

DOI: 10.2298/JSC110616195G

S. Kevrešan, B. Kovačević, V. Ćirin-Novta, K. Kuhajda, J. Kandrač, K. Pavlović, Lj. Grbović, Biochemical changes in cuttings of Robinia pseudoacacia after treatment with naphthenate, J. Serb. Chem. Soc. 72, 953–959 (2007). DOI: 10.2298/JSC0710953K

S. Kevrešan, V. Ćirin-Novta, D. Vasić, K. Kuhajda, J. Kandrač, N. Petrović, Lj. Radić, Effect of naphthenic acids on formation of adventitious roots in sunflower cuttings, Helia 26, 75–82 (2003).

DOI: 10.2298/HEL0339075K

S. Kevrešan, V. Ćirin-Novta, B. Kovačević, K. Kuhajda, J. Kandrač, N. Petrović, Lj. Radić, Efekat naftenskih kiselina na formiranje korenčića odrvenjenih reznica klonova sekcija leuse i aigeiros, Topola 171, 63–72 (2003).

V. C. Eze, B. N. Eze, Isolation and characterization of microorganisms involved in the degradation of refined petroleum products polluted sites in Elele, Rivers State, Nigeria, Int. J. Curr. Res. 8, 91–95 (2010).

M. Ebrahimi, M. R. Sarikhani, R. Fallah, Assessment of biodegradation efficiency of some isolated bacteria from oil-contaminated sites in solid and liquid media containing oil-compounds, Int. Res. J. Appl. Basic Sci. 3, 138–147 (2012).

O. V. Biryukova, P. M. Fedorak, S. A. Quideau, Biodegradation of naphthenic acids by rhizosphere microorganisms, Chemosphere 67, 2058–2064 (2007). DOI: 10.1016/j.chemosphere.2006.11.063

L. F. Del Rio, A. K. M. Hadwin, L. J. Pinto, M. D. MacKinnon, M. M. Moore, Degradation of naphthenic acids by sediment micro-organisms, J. Appl. Microbiol. 101, 1049–1061 (2006).


E. O. King, M. K. Ward, D. E. Randey, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med. 44, 301–307 (1954).

S. Sutton, Measurement of microbial cells by optical density, J. Vaud. Tech. 17, 46–49 (2011).

A. Khalafi-Nezhad, B. Mokhtari, M. N. S. Rad, Direct preparation of primary amides from carboxylic acids and urea using imidazole under microwave irradiation, Tetrahedron Lett. 44, 7325–7328 (2003).

DOI: 10.1016/S0040-4039(03)01866-5

R. J. Johnson, B. E. Smith, S. J. Rowland, C. Whitby, Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440, Int. Biodeterior. Biodegrad. 81, 3–8 (2013).

DOI: 10.1016/j.ibiod.2011.11.008

J. S. Clemente, P. M. Fedorak, A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids, Chemosphere 60, 585–600 (2005).

DOI: 10.1016/j.chemosphere.2005.02.065

DOI: http://dx.doi.org/10.20450/mjcce.2018.1371


  • There are currently no refbacks.

Copyright (c) 2018 Ljubica Grbović, Bojana Radovan Vasiljević, Ksenija Pavlović, Timea Hajnal-Jafari, Simonida Đurić, Mirjana Popsavin, Slavko Kevrešan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.