A 1:1 energetic co-crystal formed between trinitrotoluene and 2,3-diaminotoluene

Nilgun Sen

Abstract


A 1:1 co-crystal of trinitrotoluene (TNT) and 2,3-diaminotoluene was prepared by solvent evapo- ration, and the structure of the co-crystal was determined by single-crystal and powder X-ray diffraction. The results indicate that the main mechanism of co-crystallization originates from the intermolecular hy- drogen bonding (amino-nitro) and π-π stacking. We also examined the Hirshfeld surfaces and associated fingerprint plots of the co-crystal and reveal that the structures are stabilized by H…H, O–H, O…O and C…C (π-π) intermolecular interactions. We analyzed the crystal packing and show its influence upon im- pact sensitivity. The results highlight that co-crystallization is an effective way to modify the sensitivity, oxygen balance and density of explosives.

 


Keywords


synthesis,structural determination ,Structural Chemistry

Full Text:

PDF

References


J. Akhavan, The Chemistry of Explosives., 3rd ed., RSC Press, Cambridge, UK, 2011, pp.1–2, ISBN 978-1- 84973-330-4.

A. K. Sikder, N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 112 (1–2), 1−15 (2004). DOI:10.1016/j. jhazmat.2004.04.003

F. P. A. Fabbiani, C. R. Pulham, High-pressure studies of pharmaceutical compounds and energetic materials, Chem. Soc. Rev. 35 (10), 932–942 (2006).

DOI:10.1039/B517780B

J. Evers, T. M. Klapötke, P. Mayer, G. Oehlinger, J. Welch, α- and β-FOX-7, polymorphs of a high energy density material, studied by X-ray single crystal and powder investigations in the temperature range from 200 to 423 K., Inorg. Chem., 45 (13), 4996–5007 (2006). DOI:10.1021/ic052150m.

W. C. McCrone, Cyclotetramethylene tetranitramine (HMX), Anal. Chem., 22 (9), 1225–1226 (1950).

D. J. Berry, C. C. Seaton, W. Clegg, Applying hot-stage microscopy to co-crystal screening: A study of nicoti- namide with seven active pharmaceutical ingredients, Cryst Growth Des., 8(5), 1697–1712 (2008).

DOI:10.1021/cg800035w

N. Chieng, M. Hubert, D. Saville, T. Rades, J. Aaltonen, Formation kinetics and stability of carbamazepine- nicotinamide cocrystals prepared by mechanical activa- tion, Cryst Growth Des., 9(5), 2377–2386 (2009).

DOI:10.1021/cg801253f

D. R. Weyna, T. Shattock, P. Vishweshwar, M. J. Za- worotko, Synthesis and structural characterization of co- crystals and pharmaceutical cocrystals: Mechanochemis- try vs slow evaporation from solution, Cryst Growth Des., 9(2):1106–1123 (2009). DOI:10.1021/cg800936d

J. C. Barnes, W. Golnazarians, The 1:1 complex of pyrene with 2,4,6-trinitrotoluene, Acta Cryst., C43, 549– 552 (1987).

K.B. Landenberger, A. J. Matzger, Cocrystal engineering of a prototype energetic material supramolecular chem- istry of 2,4,6-trinitrotoluene. Crystal Growth & Design., 10(12), 5341–5347 (2010). DOI:10.1021/cg101300n

O. Bolton, A. J. Matzger, Improved stability and smart- material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed., 50, 8960–8963 (2011). doi.org/10.1002/anie.201104164.

Z. Yang, H. Li, H. Huang, X. Zhou, J. Li, F. Nie, Prepa- ration and performance of a HNIW/TNT cocrystal ex- plosive, Propellants, Explos Pyrotech., 38(4), 495–501 (2013). DOI:10.1002/prep.201200093

J. B. Ledgard, The Preparatory Manual of Explosives. 3rd ed., Washington, USA, 2007, pp. 180; ISBN 13: 978-0615142906

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl Crys- tallogr., 42(2), 339–341 (2009).

DOI:10.1107/S0021889808042726

G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem., A71, 3–8 (2015). DOI:10.1107/S2053229614024218

G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta. Crystallogr. Sect. C Struct. Chem., C71, 3–8 (2015).

C. Loschen, A. Klamt, COSMO quick: A novel interface for fast σ-profile composition and its application to COSMO-RS solvent screening using multiple reference solvents, Ind. Eng. Chem. Res., 51(43), 14303–14308 (2012). DOI:10.1021/ie3023675.

M. E. Etter, Hydrogen Bonds as Design Elements in Organic Chemistry, Journal Phys. Chem. 95(8), 4601– 4610 (1991). DOI:10.1021/j100165a007.

T. W. Panunto, Z. Urbinczyk-Lipkowska, R. Johnson, M. C. Etter, Hydrogen-bond formation in nitroanilines: The first step in designing acentric materials, J. Am. Chem. Soc., 109(25), 7786–7797 (1987). DOI:10.1021/ja00259a030.

H. F. Clausen, M. S. Chevallier, M. A. Spackman, B. B. Iversen, Three new co-crystals of hydroquinone: crystal structures and hirshfeld surface analysis of intermolecu- lar interactions, New J. Chem. 34(2), 193–199 (2010). DOI:10.1039/B9NJ00463G.

M. J. Kamlet, H. G. Adolph, The relationship of impact sensitivity with structure of organic high explosives, II. Polynitroaromatic explosives. Propellants, Explos. Py- rotech., 4(2), 30–34 (1979). DOI:10.1002/prep.19790040204.

Y. Ma, A. Zhang, X. Xue, D. Jiang, Y. Zhu, C. Zhang, Crystal packing of impact-sensitive high-energy explo- sives, Cryst Growth Des., 14(11), 6101–6114 (2014).

DOI:10.1021/cg501267f

Y. Ma, A. Zhang, C. Zhang, D. Jiang, Y. Zhu, C. Zhang, Crystal packing of low-sensitivity and high-energy ex- plosives, Cryst Growth Des., 14(11), 4703–4713 (2014).

DOI:10.1021/cg501048v

H. H. Cady, A. C. Larson, The crystal structure of 1,3,5- triamino-2,4,6-trinitrobenzene, Acta Crystallographica, 18, 485–496 (1965).

DOI: 10.1107/S0365110X6500107X

J. R. Kolb, H. F. Rizzo, Growth of 1,3,5-triamino-2,4,6- trinitrobenzene (TATB). I. Anisotropic thermal expan- sion. Propellants and Explosives, 4, 10–16 (1979).

DOI: 10.1002/prep.19790040104

C. Zhang, X. Wang, H. Huang, π-Stacked interactions in explosive crystals: Buffers against external mechanical stimuli, J. Am. Chem. Soc. 130(26), 8359–8365 (2008).

DOI:10.1021/ja800712e

J. J Dick, Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive, Appl. Phys. Lett., 44(9), 859–861 (1984).

DOI:10.1063/1.94951

M. M. Kuklja, S. N. Rashkeev, Interplay of decomposi- tion mechanisms at shear-strain interface, J. Phys.Chem. C. 113(1), 17–20 (2009). DOI:10.1021/jp808367r

C. Zhang, X. Xue, Y. Cao, Intermolecular friction sym- bol derived from crystal information, Cryst. Eng. Comm. 5(34), 6837 (2013). DOI:10.1039/c3ce40817e

R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, T. Gelbrich, Polymorphism in 2-4-6- trinitrotoluene, Cryst. Growth. Des. 3(6), 1027–1032 (2003). DOI:10.1021/cg0340704.




DOI: http://dx.doi.org/10.20450/mjcce.2018.1421

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Nilgun Sen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.