Synthesis and characterization of a novel isocoumarin derived polymer and its thermal decomposition kinetics

Adnan Kurt, Halil Ibrahim Avci, Murat Koca

Abstract


A novel isocumarin derived polymer poly(2-(isocoumarin-3-yl)-2-oxoethyl methacrylate) poly(ICEMA) was synthesized by free radical polymerization. The spectral characterization was performed with FTIR and 1H,13C-NMR techniques. The glass transition temperature of poly(ICEMA) was measured to be 161.69 °C by DSC technique. The initial decomposition temperatures obtained from TGA showed a change in the positive direction from 256.59 °C to 286.10 °C as the heating rate increased to 20 °C/min. Thermal decomposition activation energies of poly(ICEMA) in the conversion range of 7% - 19% were found to be 136.12 kJ/mol and 134.83 kJ/mol by Flynn–Wall–Ozawa and Kissinger’s models, respectively. In addition, various integral models such as Coats-Redfern, Tang, Madhusudanan and Van-Krevelen models were used to determine the thermal decomposition mechanism of poly(2-(isocoumarin-3-yl)-2-oxoethyl methacrylate)which showed that it proceeded at the optimum heating rate of 5 ºC/min over the D1 one-dimensional diffusion type deceleration mechanism

Keywords


Isocoumarin polymer; synthesis and characterization; thermal decomposition kinetics; activation energy

Full Text:

PDF

References


S. Pal, V. Chatare, M. Pal, Isocoumarin and its derivatives: an overview on their synthesis and applications, Curr. Org. Chem. 15, 782-800 (2011), DOI: 10.2174/138527211794518970.

R. D. Barry, Isocoumarins. Development since 1950, Chem. Rev. 64, 229-260 (1964), DOI: DOI: 10.1021/cr60229a002.

E. Napolitano, Synthesis of isocoumarins over the last decade: a review, Org. Prepn. Procedures Intl. 29, 631-664 (1997), DOI: 10.1080/00304949709355245.

S. Pathak, D. Das, A. Kundu, S. Maity, N. Guchhait, A. Pramanik, Synthesis of 4-hydroxyindole fused isocoumarin derivatives and their fluorescence “Turn-off” sensing of Cu(II) and Fe(III) ions, RSC Adv. 5, 17308-17318 (2015), DOI: 10.1039/c5ra01060h.

P. Saikia, S. Gogoi, Isocoumarins: General aspects and recent advances in their synthesis, Adv. Synth. Catal. 360, 2063-2075 (2018), DOI: 10.1002/adsc.201800019.

K. Nozawa, M. Yamada, Y. Tsuda, K. Kawai, S. Nakajima, Synthesis of antifungal isocoumarins. II. Synthesis and antifungal activity of 3-substituted isocoumarins, Chem. Pharm. Bull. 29, 2491-2495 (1981), DOI: https://doi.org/10.1248/cpb.29.2491.

T. Furuta, Y. Fukuyama, Y. Asakawa, Polygonolide an İsocoumarin from polygonum-hydropiper possessing anti-inflammatory activity, Phytochemistry, 25, 517-520 1986), DOI: https://doi.org/10.1016/S0031-9422(00)85513-2.

H. Matsuda, H. Shimoda, M. Yoshikawa, Structure-Requirements of isocoumarins, phthalides, and stilbenes from hydrangeae dulcis folium for inhibitory activity on histamine release from rat peritoneal mast cells, Bioorg. Med. Chem. 7, 1445-1450 (1999), DOI: 10.1016/S0968-0896(99)00058-9.

H. Sato, K. Konoma, S. Sakamura, Three new phytotoxins produced by Pyrenochaeta terrestris: pyrenochaetic acids A, B and C, Agric. Biol. Chem. 45, 1675-1679 (1981), DOI: https://doi.org/10.1080/00021369.1981.10864745.

A. C. Whyte, J. B. Glober, J. A. Scott, D. Mallock, Cercophorins A-C: Novel antifungal and cytotoxic metabolites from the coprophilous fungus cercophora areolata, J. Nat. Prod. 59, 765-769 (1996), DOI: 10.1021/np9603232.

Z. Essaidi, O. Krupka, K. Iliopoulos, E. Champigny, B. Sahraoui, M. Sallé, D. Gindre, Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities, Opt. Mater. 35, 576–581 (2013), DOI: 10.1016/j.optmat.2012.10.011.

T. Han, H. Q. Deng, C. Y. Y. Yu, C. Gui, Z. G. Song, R. T. K. Kwok, J. W. Y. Lam, B. Tang, Functional isocoumarin-containing polymers synthesized by rhodium-catalyzed oxidative polycoupling of aryl diacid and internal diyne, Polym. Chem. 7, 2501-2510 (2016), DOI: 10.1039/c6py00206d.

Kurt, A., and Koca, M., Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites, Journal of Engg. Research, 2016, vol. 4, no. 4, pp. 46-65.

A. Kurt, O. K. Topsoy, Preparation of novel coumarin cyclic polymer/montmorillonite based nanocomposites, Russ. J. Appl. Chem. 90, 2019−2027 (2017), DOI: 10.1134/S1070427217120199.

A. Kurt, P. Yılmaz, Thermal decomposition kinetics of benzofuran derived polymer/organosilicate nanocomposites, Kuwait J. Sci. 43, 172-184 (2016).

Z. Barutçu, C. Kırılmış, A. Kurt, Synthesis, characterization and thermal decomposition kinetics of a novel benzofuran ketoxime derived polymer, Acta Chim. Slov. 62, 428-436 (2015), DOI: 10.17344/acsi.2014.900.

H. J. Patel, M. G. Patel, A. K. Patel, K. H. Patel, R. M. Patel, Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers, Express Polym. Lett. 2, 727–734 (2008), DOI: 10.3144/expresspolymlett.2008.86.

M. Koca, A. S. Erturk, A. Umaz, Microwave-assisted intermolecular aldol condensation: Efficient one-step synthesis of 3-acetyl isocoumarin and optimization of different reaction conditions, Arab. J. Chem. 11, 538-545 (2018), DOI: https://doi.org/10.1016/j.arabjc.2015.11.013.

S. Fomine, E. Rivera, L. Fomina, A. Ortiz, T. Ogawa, Polymers from coumarines: 4. Design and synthesis of novel hyperbranched and comb-like coumarin-containing polymers, Polymer, 39, 3551–3558 (1998), DOI: 10.1016/S0032-3861(97)10003-9

X. L. Meng, Y. D. Huang, H. Yu, Z. S. Lv, Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units, Polym. Degrad. Stab. 92, 962-967 (2007), DOI: 10.1016/j.polymdegradstab.2007.03.005

S. Vyazovkin, Thermal analysis, Anal. Chem. 78, 3875-3886 (2006), DOI: 10.1021/ac0605546.

S. Ma, J. O. Hill, S. Heng, A kinetic-analysis of the pyrolysis of some australian coals by nonisothermal thermogravimetry, J. Therm. Anal. 37, 1161-1177 (1991), DOI: 10.1007/BF01913852.

Z. D. Zivkovic, J. Sestak, Kinetics and mechanism of the oxidation of molybdenum sulphide, J. Therm. Anal. Calorim. 53, 263-267 (1998), DOI: 10.1023/A:1010108813595.

J. H. Flynn, L. A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. B, 4, 323-328 (1966), DOI: https://doi.org/10.1002/pol.1966.110040504

T. Ozawa, Applicability of Friedman plot, J. Therm. Anal. 31, 547-551 (1986), DOI: 10.1007/BF01914230.

H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1702-1706 (1957), DOI: 10.1021/ac60131a045.

A. W. Coats, J.P Redfern, Kinetic parameters from thermogravimetric data, Nature, 201, 68-69 (1964), DOI:10.1038/201068a0

W. Tang, Y. Liu, H. Zhang, C. Wang, New approximate formula for Arrhenius temperature integral, Thermochim. Acta, 408, 39-43 (2003), DOI: 10.1016/S0040-6031(03)00310-1.

P. M. Madhusudanan, K. Krishnan, K. N. Ninan, New equations for kinetic-analysis of nonisothermal reactions, Thermochim. Acta, 221, 13-21 (1993), DOI: 10.1016/0040-6031(93)80519-G

D. W. Van Krevelen, C. Van Herrden, F. J. Hutjens, Kinetic study by thermogravimetry, Fuel, 30, 253-258 (1951).




DOI: http://dx.doi.org/10.20450/mjcce.2018.1503

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Adnan Kurt, Halil Ibrahim Avci, Murat Koca

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.