Dependence of tautomerism on substituent type in o-hydroxy Schiff bases

Çiğdem Albayrak Kaştaş, Gökhan Kaştaş

Abstract


Quantum computational methods were used to elucidate the structures of the o-hydroxy Schiff bases with different substituents. It is possible for a Schiff base to have different tautomeric structures depending on intramolecular proton transfer from the phenolic oxygen atom to the nitrogen atom. Proton transfer results in two tautomeric structures known as the phenol-imine and keto-amine forms. To explain the substituent effect on the proton transfer process in five o-hydroxy-Schiff bases, possible geometric structures in gas phase were optimized using density functional theory (DFT) at the B3LYP/6-311G(d,p) level. To describe tautomerism including intramolecular proton transfer, potential energy surface (PES) scans were performed starting from the optimized geometry of the phenol-imine form. HOMA indices were calculated in order to estimate p-electron delocalization. In addition, the substituent effect on the tautomerization rate was examined using Hammett substituent constants and calculating the activation energies.


Keywords


Schiff base; tautomerism; phenol-imine; keto-amine; DFT; PES

Full Text:

PDF

References


A. Özek, Ç. Albayrak, M. Odabaşoğlu, O. Büyükgüngör, Three (E)-2-[(bromophenyl)iminomethyl]-4-metho-xyphenols, Acta Crystallogr., C63, o177–o180 (2007). DOI:10.1107/S0108270107003241

B. Koşar, Ç. Albayrak, M. Odabaşoğlu, O. Büyükgün-gör, 2-Hydroxy-6-[(2-hydroxyphenylamino) methylene]-cyc¬lohexa-2,4-dienone, Acta Crystallogr., E61, o1097–o1099 (2005). DOI:10.1107/S160053680500807X

B. Koşar, Ç. Albayrak, M. Odabaşoğlu, O. Büyükgün-gör, Theoretical and Experimental Studies on Electronic Structure, Cocrystallization, and Intramolecular Proton Transfer of Two Tautomers: (E)-2-{[2-(Hydroxymethyl) phenylimino]methyl}-5-methoxyphenol and (z)-6-{[2-(Hydroxymethyl)phenylamino]methylene}-3-methoxy-cyclohexa-2,4-die none Int. J. Quantum Chem., 111, 3654–3663 (2011). DOI: 10.1002/qua.22789

I. Moustakali-Mavridis, E. Hadjoudis, A. Mavridis, Crystal and molecular structure of thermochromic Schiff bases, Acta Crystallogr., B34, 3709–3715 (1978).

DOI: doi.org/10.1107/S0567740878011930

E. Hadjoudis, M. Vitterakis, I. Moustakali-Mavridis, Photochromism and thermochromism of Schiff bases in solid state and rigid glasses, Tetrahedron, 43, 1345–1360 (1987). DOI: 10.1016/S0040-4020(01)90255-8

H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems, Elsevier, Amsterdam, 1990, pp. 685–710.

C. A. Mc Auliffe, R. V. Parish, S. M. Abu-El-Wafa, R. M. Issa, High-valent manganese complexes of tetradentate Schiff base ligands. ESR-active and ESR-silent dimeric species, Inorg. Chim. Acta, 115, 91–94 (1986). DOI: doi.org/10.1016/S0020-1693(00)87702-6

T. Maki, H. Hashimato, Bull. Chem. Soc. Jpn. Vat dyes of acenaphthene Series. IV. Condensation of perylenetetracarboxylic Acid Anhydride with o-phenylenediamine, 25, 411–413 (1952).

DOI: doi.org/10.1246/bcsj.25.411

S. Papie, N. Kaprivanae, Z. Grabarie, D. Paracosterman, Metal complex dyes of nickel with Schiff bases, Dyes Pigments 25, 229–240 (1994).

DOI: doi.org/10.1016/0143-7208(94)85012-7

S. Zolezzi, E. Spodine, A. Decinti, Electrochemical studies of copper(II) complexes with Schiff-base ligands, Polyhedron, 21, 55–59 (2002).

DOI: doi.org/10.1016/S0277-5387(01)00960-3

M. Singh, Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr. Pharm. Des., 5, 443–451 (1999).

V. Ambike, S. Adsule, F. Ahmed, Z. Wang, Z. Afrasiabi, E. Sinn, F. Sarkar, S. Padhye, Copper conjugates of nimesulide Schiff bases targeting VEGF, COX and Bcl-2 in pancreatic cancer cells, J. Inorg. Biochem., 101, 1517–1524 (2007).

DOI: 10.1016/j.jinorgbio.2007.06.028

C. P. Prabhakaran, C. C. Patel, NN′ ethylene bis (salicylideneimine) complexes of manganese (III) halides, J. Inorg. Nucl. Chem., 31, 3316–3319 (1969).

DOI: doi.org/10.1016/0022-1902(69)80121-1

M. R. Mahmoud, M. T. El-Haty, Cobalt(II), nickel(II), copper(II), thorium(IV) and uranium(VI) complexes of some heterocyclic Schiff bases derived from hydroxy aromatic aldehydes and 2-aminopyridine, J. Inorg. Nucl. Chem., 42, 349–353 (1980).

DOI: doi.org/10.1016/0022-1902(80)80005-4

Z. Cimerman, S. Miljanic, J. Antolic, Fluorescence char-acteristics of Schiff bases derived from amino- and ami-noalkylpyridines, Spectrosc. Lett., 32, 181–196 (1999). DOI: doi.org/10.1080/00387019909349976

R. D. Jones, D. A. Summervile, F. Basolo, Synthetic oxygen carriers related to biological systems, Chem. Rev., 79, 139–179 (1979). DOI: 10.1021/cr60318a002

R. R. Gagne, C. I. Spiro, T. J. Smith, W. R. Homanh, W. R. Thies, K. Shiemke, The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent copper(I)copper(II) complex, J. Am. Chem. Soc., 103 (1981) 4073-4081. DOI: 10.1021/ja00404a017

R. Atkins, G. Brfwer, E. Kokto, G. M. Mockler, E. Sinn, Copper(II) and nickel(II) complexes of unsymmetrical tetradentate Schiff base ligands, Inorg. Chem., 24, 127–134 (1985). DOI: 10.1021/ic00196a003

T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, W. Wei, A.N.W. Cooper, Macrocyclic ligand design. X-ray, DFT and solution studies of the effect of N-methylation and N-benzylation of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane on its affinity for selected transition and post-transition metal ions, J. Chem. Soc., Dalton Trans. 614–620 (2001).

DOI: 10.1039/B008789K

S. Chandra, L. K. Cupta, Spectral, physicochemical and biological characterization of 2,5,11,14,19,20-hexaaza-3,12-dimethyl-4,13-dipropyl-tricyclo [13.3.1.1(6-10)] co-sane-1(19),2,4,6(20),7,9,11,13,15,17-decaene and its transition metal complexes, Trans. Met. Chem., 30, 630–635 (2005).

DOI: doi.org/10.1007/s11243-005-4826-4

T. M. A. Ismail, Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of Schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes, J. Coord. Chem., 58 (2), 141–151 (2005).

DOI: doi.org/10.1080/0095897042000274733

R. R. Fenton, R. Gauci, P. C. Junk, L. F. Lindoy, R. C. Luckay, G. V. Meehan, J. R. Price, P. Tumer, G. Wei, Macrocyclic ligand design. Structure–function relationships involving the interaction of pyridinyl-containing, mixed oxygen–nitrogen donor macrocycles with cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), silver(I) and lead(II), J. Chem. Soc., Dalton Trans. 2185–2193 (2002).

DOI: 10.1039/B201195F

M. T. H. Tarafder, N. Saravanan, K. A. Course, Coordi-nation chemistry and biological activity of nickel(II) and copper(II) ion complexes with nitrogen–sulphur donor ligands derived from S-benzyldithiocarbazate (SBDTC), Trans. Met. Chem., 26, 613–618 (2001).

DOI: doi.org/10.1023/A:1012047001167

A. Blagus, D. Cinčić, T. Friščić, B. Kaitner, V. Stilinović, Schiff based derived from hydroxyaryl aldehydes: molec-ular and crystal structure, tautomerism, quinoid effect, co-ordination compounds, Maced. J. Chem. Eng., 29, 117–138 (2010).

Ç. Albayrak, G. Kaştaş, M. Odabaşoğlu, R. Frank, The prototropic tautomerism and substituent effect through strong electron-withdrawing group in (E)-5-(diethylamino)-2-[(3-nitrophenylimino)methyl]phenol, Spectrochim. Acta, Part A, 114, 205–213 (2013).

DOI: doi.org/10.1016/j.saa.2013.05.044

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-ery, T. J. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Men-nucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gom-perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Mar-tin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. John-son, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford CT (2004).

R. Dennington II, T. Keith, J. Millam, GaussView, Ver-sion 4.1.2. Semichem Inc, Shawnee Mission, KS, (2007).

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 98, 11623–11627 (1994). DOI: 10.1021/j100096a001

M. J. Frisch, J. A. Pople, J. S. Binkley, Self consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, The Journal of Chemical Physics 80, 3265 (1984). DOI: https://doi.org/10.1063/1.447079

C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimize equilibrium geometries and transition states, J. Comp. Chem., 17, 49–56 (1996). DOI: doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0

A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 88, 899–926 (1988). DOI: 10.1021/cr00088a005

E. D. Glendening, C. R. Lsndis, F. Weinhold, Natural bond orbital methods, Comput. Mol. Sci. 1–42 (2011), DOI: 10.1002/wcms.51

L. P., Hammett, The effect of structure upon the reactions of organic compounds. Benzene derivatives, J. Am. Chem. Soc., 59 (1): 96–103 (1937).

DOI:10.1021/ja01280a022.

R. A. Y. Jones, Physical and Mechanistic Organic Chemistry, Cambridge University Press, 1979, pp. 35.

T. M. Krygowski, Crystallographic studies of inter and intramolecular interactions reflected in aromatic character of  elektron systems, J. Chem. Inf. Comput. Sci, 33, 70–78 (1993).

T. M. Krygowski, J. E. Zachara, R. Moszynski, Theoretical study of changes in π-electron delocalization in the analogues of an ortho-hydroxy Schiff base when the proton is replaced with Li+ or BeH+, J. Chem. Inf. Model., 45 (6), pp 1837–1841 (2005). DOI: 10.1021/ci0502911

M. Odabaşoğlu, Ç. Albayrak, O. Büyükgüngör, H. Goesmann, 4-[(3-hlorophenyl)diazenyl]-2-{[tris(hydro-xymethyl)methyl]-aminomethylene}cyclohexa-3,5-dien-1(2H)-one, Acta Crystallogr., C59 o234–o236 (2003). DOI: 10.1107/S0108270103006292

O. Şahin, Ç. Albayrak, M. Odabaşoğlu, O. Büyükgüngör, (Z)-3-Hydroxy-6-[(2-methoxyphenylamino)-methylene] cyclohexa-2,4-dienone, Acta Crystallogr., E61, o2859–o2861 (2005).

DOI: doi.org/10.1107/S1600536805024189

Ç. Albayrak, G. Kaştaş, M. Odabaşoğlu, O. Büyükgüngör, Existence of a resonance hybrid structure as a result of proton tautomerism in (±)-(E)-4-bromo-2-[(2,3-dihydroxypropylimino)methyl]phenol racemate, Spectrochim. Acta A, 120, 201–207 (2014).

DOI: http://dx.doi.org/10.1016/j.saa.2013.10.022

Ç. Albayrak, G. Kaştaş, M. Odabaşoğlu, R. Frank, Probing the compound (E)-5-(diethylamino)-2-[(4-methylphenylimino)methyl]phenol mainly from the point of tautomerism in solvent media and the solid state by experimental and computational methods, Spectrochim. Acta A, 81, 72–78 (2011).

DOI:10.1016/j.saa.2011.05.046

Ç. Albayrak, G. Kaştaş, M. Odabaşoğlu, O. Büyükgüngör, Probing the compound (E)-2-[(4-bromophenylimino)methyl]-6-ethoxyphenol mainly from the point of tautomerism in solvent media and the solid state by experimental and computational methods, J. Mol. Struct., 1000, 162–170 (2011).

DOI:10.1016/j.molstruc.2011.06.018

Ç. Albayrak Kaştaş, G. Kaştaş, A. Güder, M. Gür, H. Muğlu, O. Büyükgüngör, Investigation of two o-hydroxy Schiff bases in terms of prototropy and radical scavenging activity, J. Mol. Struct., 1130, 623–632, (2017).

DOI: http://dx.doi.org/10.1016/j.molstruc.2016.11.023

Ç. Albayrak Kaştaş, G. Kaştaş, M. Gür, H. Muğlu, O. Büyükgüngör, Analysis of tautomeric equilibrium in (E)-4,6-dibromo-2-[(4-fluorophenylimino)methyl]-3-me-thoxyphenol compound, Spectrochim. Acta A, 151, 731–738 (2015).

DOI:http://dx.doi.org/10.1016/j.saa.2015.07.030




DOI: http://dx.doi.org/10.20450/mjcce.2019.1531

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Çiğdem Albayrak Kaştaş

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.