Spiroconjugation over a boron atom: facile synthesis, structures and vibrational spectra of crystalline 1,3-disubstituted (propen-1,3-diolato)(oxalato)boron molecules

Authors

  • Panče Naumov Osaka University, Graduate School of Engineering, Frontier Research Base for Global Young Researchers, 2-1 Yamada-oka, Suita, Osaka 565-0871,
  • Panče Naumov Osaka University, Graduate School of Engineering, Frontier Research Base for Global Young Researchers, 2-1 Yamada-oka, Suita, Osaka 565-0871
  • Minjas Zugik Department of Physics, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 4TL
  • Albert Lee University of Malaya, 50603 Kuala Lumpur
  • Seik Weng Ng University of Malaya, 50603 Kuala Lumpur

DOI:

https://doi.org/10.20450/mjcce.2009.222

Keywords:

ab initio calculations, boron, laser dyes, nonlinear materials, organoboron compounds, solvothermal synthesis, spiroconjugation, spirointeraction, vibrational spectra

Abstract

Preparation of single crystals of spiroconjugated bis-chelated boron compounds containing ligands such as propen-1,3-diolates and oxalate, for application as lasing materials in dye laser technology, is burdened by their insolubility in organic solvents and the high melting temperatures. In this work, on the example of (diphenylpropen- 1,3-diolato)(oxalato)boron (1) it is demonstrated that the solvothermal method can be successfully applied as facile, convenient and fairly inexpensive method to overcome the difficulties with preparation of such materials in single crystalline form directly from boric acid and the ligands. Solid-state IR spectra (recorded at room temperature and low temperature) and Raman spectra (recorded at room temperature) and equilibrium molecular geometries of 1 and three other disubstituted β-ketoboron molecules [RC(O)CHC(O)R'](O2CCO2)B (R = R' = t-butyl, 2; R = methyl, R' = phenyl, 3; R = R' = 2-pyridyl, 4) in the ground electronic states were analyzed in detail, based on HF SCF (HF/3-21G, HF/6-31G), MP2 (MP2/6-31G) and DFT (B3LYP/6-31G) calculations. Minima with spiro-chelated tetrahedral (sp3) BO4 or trigonal-planar (sp2) BO3 coordination were located on the potential energy hypersurfaces for all systems. The tetrahedral structures are more stable relative to the trigonal structures (for example, ~37 kcal mol−1 in the case of 2), accounting for the observation that they represent the actual conformers in the solid state. Vibrational criteria for spectroscopic distinction between trigonal and tetrahedral boron−oxygen coordination geometry are presented.

References

(a) M. Maeda, Laser dyes: Properties of organic compound for dye lasers, New York: Academic Press, 1984; (b) H. Zollinger, Color chemistry: Synthesis, properties and applications of organic dyes and pigments, Weinheim: VCH, 1987.

Selected papers on dye lasers, Bellingham, Washington: SPIE Optical Engineering Press, 1992.

Y. L. Chow, Y.-H. Zhang, M. X. Zheng, A. Rassat, Absorption and fluorescence properties of tetracoordinated borates: energy versus electron transfer in spirointeractions, Chem. Phys. Lett. 272, 471–477 (1997).

V. E. Karasev, O. A. Korotkikh, Luminescence Properties of Boron β-Diketonates, Russ. J. Inorg. Chem. 30, 1290– 1292 (1985).

P. Rapta, K. Erentova, A. Staško, H. Hartmann, Anion radicals as intermediates in the cathodic reduction of β- diketobornoates (cyclic voltammery, EPR and UV-VIS), Electrochim. Acta 39, 2251–2259 (1994).

(a) H. C. Lim, Crystal structures and lasing characteristics of β-diketoboronates, M. Tech. dissertation, University of Malaya, 1999. (b) H. Lim, S. Yap, T. Tou, S. W. Ng, Amplified spontaneous emissions from (oxalato)- (dibenzoylmethanato)boron, Opt. Mater. 27, 1815–1818 (2005).

H. Hartmann, Ein einfacher Weg zu neuartigen Borhaltigen Spiroverbindungen, J. Prakt. Chem., 328, 755– 762 (1986).

N. D. Economou, V. P. Papageorgiou, J. Kopf, Synthesis and molecular structure of (oxalato)(2,4-hexanedionato) boron(III), Z. Kristallogr. 187, 55–61 (1989).

A. T. Balaban, I. Haiduc, H. Höpfl, N. Farfán, R. Santillan, Spiroborates revisited. X-ray crystal and molecular structures of boron chelate compounds with tropolone and 1,3- diketones, Main Group Met. Chem. 19, 385-–395 (1996).

H. Höpfl, N. P. Hernández, S. R. Líma, R. Santillan, N. Farfán, X-ray crystallographic study of neutral boron chelates with β-diketones and tropolone, Heteroatom Chem. 9, 359–368 (1998).

R. Boese, R. Köster, M. Yalpani, M. The colour of chelates of boron. An X-ray structural investigation of bis(4- methylphenyl)boryl and 9-borabicyclo-

3.1]nonyl acetylacetonates, Chem. Ber. 118, 670–675 (1985).

F. A. Cotton, W. H. Isley, Structure of a novel tetrahedral boron complex, bis(acetato)(acetylacetonato)boron(III), B(O2CMe)2(acac), 21, 300–302 (1982).

S. J. Rettig, J. Trotter, Structural studies of organoboron compounds. XII. Crystal and molecular structures of (acetylacetonate)diphenylboron and (tropolonato)diphenylboron, Can. J. Chem. 60, 2957–2964 (1982).

CS CHEM3D modeling package, CambridgeSoft Corporation, 1998.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc. 107, 3209–3903 (1985).

M. J. S. Dewar, C. H. Reynolds, An improved set of mndo parameters for sulfur, J. Comp. Chem. 2, 140–143 (1986).

M. J. Frisch, et al. GAUSSIAN94w (rev. B2), Gaussian Inc., Pittsburgh PA, 1995.

M. J. Frisch, et al., GAUSSIAN98, Gaussian, Inc., Pittsburgh PA, 1998.

H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comp. Chem. 3, 214–218 (1982).

H. B. Schlegel, in New theoretical Concepts for Understanding organic reactions, Ed. J. Bertran, Kluwer Academic, The Netherlands, 33, 1989.

H. B. Schlegel, Geometry Optimization on Potential Energy Surfaces, in Modern Electronic Structure Theory, Ed. D. R. Yarkony, World Scientific Publishing, Singapore, 1994.

J. R. Durig, M. J. Lee, H. M. Badawi, J. F. Sullivan, D. I. Durig, Some applications of ab initio calculations in molecular spectroscopy, J. Mol. Struct. 266, 59–64 (1992).

I. G. Binev, B. A. Stamboliyska, Y. I. Binev, E. A. Velcheva, J. A. Tsenov, IR spectra and structure of 1-Hisoindole- 1,3(2H)-dione (phthalimide), cis-hexahydro-1- H-isoindole-1,3(2H)-dione (hexahydrophthalimide) and of their nitranions, J. Mol. Struct. 513, 231–243 (1999).

B. A. Stamboliyska, Y. I. Binev, V. B. Radomirska, J. A. Tsenov, I. N. Juchnovski, IR spectra and structure of 2,5- pyrrolidinedione (succinimide) and of its nitranion: experimental and ab initio MO studies, J. Mol. Struct. 516, 237–245 (2000).

L. Lapinski, H. Rostkowska, M. J. Nowak, J. S. Kwiatkowski, J. Leszczynski, Infrared spectra of thiouracils: experimental matrix isolation and ab initio Hartree-Fock, post-Hartree-Fock and density functional theory studies, Vib. Spectrosc. 13, 23–40 (1996).

B. A. Hess, L. J. Schaad, P. Čársky, R. Zahradník, Ab initio calculations of vibrational spectra and their use in the identification of unusual molecules, Chem. Rev. 86, 709–730 (1986).

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648– 5652 (1993).

C. Lee, W. Yang, R. G. Parr, Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B37, 785–789 (1988).

C. Møller, M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Phys. Rev. 46, 618–622 (1934).

R. S. Mülliken, Electronic Population Analysis on LCAO–MO Molecular Wave Functions, 23, 1833–1840 (1955).

N. N. Grenwood, The Chemistry of Boron, Oxford: Pergamon Press, Oxford, 1973, pp. 906−909.

R. H. Cragg, Other Aspects of Boron Chemistry, in MTP International Review of Science, Inorganic Chemistry, Ed. M.F. Lappert, Butterwords, London, 1972.

S. J. Rettig, J. Trotter, Crystal and Molecular Structure of B,B-Diphenylboroxazolidine (2-Aminoethyl Diphenylborinate), Ph2BO(CH2)2NH2, Can. J. Chem. 51, 1288– 1294 (1973).

S. J. Rettig, J. Trotter, The crystal and molecular structure of B,B-bis-(p-fluorophenyl)boroxazolidine, (p-FC6H4)2BO(CH2)2NH2, Acta Cryst. B30, 2139– 2145 (1974).

S. J. Rettig, J. Trotter, Crystal and molecular structure of (salicylaldehydato)diphenylboron, Can. J. Chem. 54, 1168–1175 (1976).

H. Höpfl, M. Sánchez, V. Barba, N. Farfán, S. Rojas, R. Santillan, Synthesis and Study of Monomeric and Dimeric Boronates by Spectroscopic Methods and X-ray Crystallography, Inorg. Chem. 37, 1679–1692 (1998).

A. W. Hanson, E. W. Macaulay, The crystal structure of benzoylacetonato boron difluoride, Acta Cryst. B28 1961–1967 (1972).

I. G. Binev, Infrared spectra and structure of butyldimethylammonium dicyanomethylide: an ab initio force field treatment, Spectrochim. Acta A53, 1795–1801 (1997).

J. Fulara, M. J. Nowak, L. Lapinski, A. Les, L. Adamowicz, Theoretical and matrix-isolation experimental study of the infrared spectra of 5-azauracil and 6- azauracil, Spectrochim. Acta A47, 595–613 (1991).

M. J. Nowak, A. Les, L. Adamowicz, Application of ab initio quantum mechanical calculations to assign matrixisolation IR Spectra of oxopyrimidines, Trends Phys. Chem. 4, 137–141 (1994).

P. T. McKittirick, J. E. Katon, Infrared and Raman group frequencies of cyclic imides, Appl. Spectrosc. 44, 812– 817 (1990).

R. A. Nyquist, S. L. Fiedler, Infrared study of five- and six-membered type cyclic imides, Vib. Spectrosc. 8, 365– 386 (1995).

R. R. Servoss, H. M. Clark, Vibrational spectra of normal and isotopically labeled boric acid, J. Chem. Phys. 26, 1175–1178 (1957).

A. Meller, M. Wojnowska, (BO)-Banden in den IRSpektren von Deuteroalkoxyboranen und Halogenalkoxyboranen, Monatsh. Chem. 100, 1489–1493 (1969).

K. Wu, S.-Y. Lee, Ab initio calculations on normal mode vibrations and the Raman and IR spectra of the

[B3O6]3- metaborate ring, J. Phys. Chem. 101, 937–940 (1997).

B. N. Meera, A. K. Sood, N. Chandrabhas, J. Ramakrishna, Raman study of lead borate glasses, J. Non- Cryst. Solids 126, 224-230 (1990).

D. Maniu, I. Ardelean, T. Iliescu, S. Cinta, O. Cozar, Raman spectroscopic investigations of the oxide glass system (1−x)(3B2O3•K2O)xMO (MO = V2O5 or CuO), J. Mol. Struct. 410/411, 291–294 (1997).

G. V. Kalacheva, E. Svarcs, V. G. Ben’kovskii, I. D. Lesnov, Borates, Zh. Neorg. Khim. 15, 401–404 (1970).

D. V. Lanzisera, L. Andrews, Reactions of laser-ablated boron atoms with methanol – Infrared spectra and ab initio calculations of CH3BO, CH2BOH, and CH2BO in solid argon, J. Phys. Chem. 101, 1482–1487 (1997).

Downloads

Published

2009-06-15

How to Cite

Naumov, P., Naumov, P., Zugik, M., Lee, A., & Ng, S. W. (2009). Spiroconjugation over a boron atom: facile synthesis, structures and vibrational spectra of crystalline 1,3-disubstituted (propen-1,3-diolato)(oxalato)boron molecules. Macedonian Journal of Chemistry and Chemical Engineering, 28(1), 55–77. https://doi.org/10.20450/mjcce.2009.222

Issue

Section

Organic Chemistry