The use of poly(ethylene oxide) hydrogels as immobilization matrices for yeast cells

Ruzica Jovanovic-Malinovska, Samuel A. Amartey, Slobodanka Kuzmanova, Eleonora Winkelhausen, Maja Cvetkovska, Christo Tsvetanov


Hydrogels based on high molecular weight poly(ethylene oxide) (PEO) copolymers of ethylene oxide and propylene oxide, PEO/alginate and PEO/chitosan were synthesized by UV crosslinking of polymer aqueous solutions. These hydrogels were then characterized in terms of their gel fraction yield, degree of equilibrium swelling, shear storage and loss moduli. The physico-mechanical properties of the hydrogels were then correlated to their ability to sustain the viability and the activity of immobilized cells. The production of ethanol by immobilized Saccharomyces cerevisiae was used to test the suitability of the PEO based hydrogels as immobilization matrices. The PEO hydrogel with a value of 255 Pa for Gʹ and 11 Pa for Gʹʹ, showed the best mechanical properties of all the gels tested. Scanning electron microscope (SEM) analysis of the imobilized S. cerevisiae showed proliferation of the yeast cells entrapped inside the polymeric matrix.


hydrogels; poly(ethylene oxide); immobilization; entrapment; Saccharomyces cerevisiae

Full Text:



V. A. Nedovic, A. Durieux, L. Van Nedervelde, P. Rosseels, J. Vandegans, A.-M. Plaisant, J.-P.Simon, Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells, Enzyme Microb. Technol., 26, 834–839 (2000).

A. A. El-Hady, H. A. A. El-Rehim, Production of prednisolone by Pseudomonas olevorans cells incorporated into PVP/PEO radiation crosslinked hydrogels, J. Biomed. Biotechnol., 4, 219–226 (2004).

K.-Y. A. Wu, K. D. Wisecarver, Cell immobilization using PVA crosslinked with boric acid, Biotechnol. Bioeng., 39, 447–449 (1992).

M. C. Doria-Serrano, G. Riva-Palaco, F.A. Ruiz-Treviňo, M. Hernández-Esparza, Poly(N-vinyl pyrrolidone)- calcium alginate (PVP-Ca-alg) composite hydrogels: physical properties and activated sludge immobilization for wastewater treatment, Ind. Eng. Chem. Res., 41, 3163–3168 (2002).

P. Wittlich, E. Capan, M. Schlieker, K.-D. Vorlop, U. Jahnz, Entrapment in lentikats, Encapsulation of various biocatalysts – bacteria, fungi, yeast or enzymes into polyvinyl alcohol based hydrogel particles, in: Fundamentals of Cell Immobilization Biotechnology, V. Nedović, R. Willaert (Eds), Kluwer Academic Publishers, 2004, pp. 53–63.

K. Koyama, M. Seki, Cultivation of yeast and plant cells entrapped in low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol, J. Biosci. Bioeng., 97, 111–118 (2004).

E. Teqieddin, C. Lee, M. Amiji, Perm-selective chitosanalginate hybrid microcapsules for enzyme immobilization technology, Pharm. Eng., 22, 192–196 (2002).

J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, Europ. J. Pharm. Biopharm., 57, 19–34 (2004).

K. C. Gupta, M. N. V. Ravi Kumar, Studies on semiinterpenetraiting polymer network beads of chitosanpoly( ethylene glycol) for the controlled release of drugs, J. Appl. Polym. Sci., 80, 639–649 (2001).

Ch. Tsvetanov, R. Stamenova, M. Doycheva, D. Dotcheva, N. Belcheva, Intelligent networks based on poly(oxyethylene), Macromol. Symp., 128, 165–182 (1998).

M. Doytcheva, D. Dotcheva, R. Stamenova, A. Orahovats, Ch. Tsvetanov, J. Leder, Ultraviolet-induced crosslinking of solid poly(ethylene oxide), J. Appl. Polym. Sci., 64, 2297–2307 (1997).

G. L. Miller, Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal. Chem., 31, 426– 428 (1959).

H. J. Kong, M. K. Smith, D. J. Mooney, Designing alginate hydrogels to maintain viability of immobilized cells, Biomaterials 24, 4023–4029 (2003).

M. Abbi, R. C. Kuhad, A. Singh, Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): Fermentation behaviour, Process Biochem., 31, 555–560 (1996).

E. Winkelhausen, S. Kuzmanova, Microbial conversion of D-xylose to xylitol. Review J. Ferment. Bioeng., 86 1– 14 (1998).

E. Winkelhausen, S. A. Amartey, S. Kuzmanova, Xylitol production from D-xylose at different oxygen transfer coefficients in a batch bioreactor, Eng. Life Sci., 4, 150– 154 (2004).

T. Senac, B. Hahn-Hägerdal, Concentrations of intermediate metabolite in free and calcium alginate-immobilized cells of D-glucose fermenting Saccharomyces cerevisiae, Biotechnol. Tech. 5, 63–68 (1991).

S. Krishnan, L. R. Gowda, M. C. Misra, N. G. Karanth, Physiological and morphological changes in immobilized L. plantarum NCIM 2084 cells during repeated batch fermentation for production of lactic acid, Food Biotechnol., 15, 193–202 (2001).



  • There are currently no refbacks.

Copyright (c) 2016 Ruzica Jovanovic-Malinovska, Samuel A. Amartey, Slobodanka Kuzmanova, Eleonora Winkelhausen, Maja Cvetkovska, Christo Tsvetanov

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.