The influence of bentonite and montmorillonite addition on thermal decomposition of novel polyurethane/organoclay nanocomposites

Authors

  • Jelena Pavličević Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad
  • Milena Špírková Institute of Macromolecular Chemistry AS CR v.v.i., Prague,
  • Oskar Bera Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad
  • Mirjana Jovičić Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad
  • Katalin Mészáros Szécsényi Faculty of Sciences, University of Novi Sad, Novi Sad
  • Jaroslava Budinski-Simendić Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad

DOI:

https://doi.org/10.20450/mjcce.2013.442

Keywords:

polycarbonate-based polyurethane nanocomposites, layered silicates, DTG, thermal stability

Abstract

Polycarbonate-based polyurethane (PC-PUs) hybrid materials were obtained by the addition of
organically modified bentonite and montmorillonite (1 w/w %). PC-PUs and their nanocomposites were
prepared using prepolymerization with two polycarbonate diols (both of Mr ca 1000) differing in chain
constitution, hexamethylene-diisocyanate and 1,4-butane diol (chain extender) as starting components. All samples contained the same hard-segment content (30 w/w %). Thermogravimetry coupled with differential scanning calorimetry (TG-DSC) was performed to obtain information about the organoclays addition on the thermal stability of the prepared polyurethane elastomers. The effect of bentonite and montmorillonite nanofillers on the decomposition pattern has been evaluated. By deconvolution of derivative thermogravimetric (DTG) curves, it has been found that the thermal decomposition of polyurethane samples takes place in three overlapping processes. Degradation kinetic parameters (activation energy and reaction order) were calculated on the basis of thermal data obtained at only one heating rate.

References

M. Špírková, Polyurethane elastomers made from linear polybutadiene diols, J. Appl. Polym. Sci., 85, 84–91 (2002).

M. Špírková, L. Matějka, B. Meissner, J. Pytela, Polybutadiene-based polyurethanes with controlled properties: preparation and characterization, J. Appl. Polym. Sci., 77, 381–389 (2000).

Khan, N. Smith, E. Jones, D. S. Finch, R. E. Cameron, Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation, Biomaterials, 26, 621–631 (2005).

A. Eceiza, M. Larranaga, K. de la Caba, G. Kortaberria, C. Marieta, M. A. Corcuera, I. Mondragon, Structure-property relationships of thermoplastic polyurethane elastomers based on

polycarbonate diols, J. Appl. Polym. Sci., 108, 3092–3103 (2008).

K. Kojio, S. Kugumiya, Y. Uchibaq, Y. Nishino, M. Furukawa, The microseparated structure of polyurethane bulk and thin flms, Polym. J., 41, 118–124 (2009).

M. Špírková, A. Strachota, M. Urbanová, J. Baldrian, J. Brus, M. Šlouf, A. Kuta, Z. Hrdlička, Structural and surface properties of novel polyurethane films, Mater. Manuf. Process., 24, 1185–1189 (2009).

K. C. Kim, S. B. Bae, J. R. Ahn, I. J. Chung, Structure-property relationships of hydroxyterminated polyether based polyurethane network, Polym. Bull., 61, 225–233 (2008).

M.C. Tanzi, D. Mantovani, P. Petrini, R. Guidoin, G. Laroche, Chemical stability of polyether urethanes versus polycarbonate urethanes, J. Biomed. Mat. Res., 36, 550–559 (1997).

S. Velankar, S. L. Cooper, Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure, Macromolecules, 33, 382–394 (2000).

J. Pavličević, M. Špírková, M. Jovičić, O. Bera, R. Poręba, J. Budinski-Simendić, The structure and thermal properties of novel polyurethane/organoclay nanocomposites obtained by prepolymerization, Compos. Part B Eng., 45, 232–238 (2013).

J. K. Pandey, K. R. Reddy, A. P. Kumar, R. P. Singh, An overview on the degradability of polymer nanocomposites, Polym. Degrad. Stab., 88, 234–250 (2005).

A. Leszczynska, J. Njuguna, K. Pielichowski, J. R. Banerjee, Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement, Thermochim. Acta., 453, 75–96 (2007).

A. Leszczynska, J. Njuguna, K. Pielichowski, J. R. Banerjee, Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes, Thermochim. Acta., 454, 1–22 (2007).

M. Špírková, J. Pavličević, A. Strachota, R. Poręba, O. Bera, L. Kaprálková, J. Baldrian, M. Šlouf, N. Lazić, J. Budinski-Simendić, Novel polycarbonate-based polyurethane elastomers:

Composition–property relationship, Eur. Polym. J., 47, 959–972 (2011).

J. Pavličević, M. Špirková, A. Strachota, K. Mészáros Szécsényi, N. Lazić, J. Budinski-Simendić, The influence of montmorillonite and bentonite addition on thermal properties of

polyurethanes based on aliphatic polycarbonate diols, Thermochim. Acta., 509, 73–80 (2010).

M. N. Satheesh Kumar, Siddaramaiah, Thermo gravimetric analysis and morphological behavior of castor oil based polyurethane–polyester nonwoven fabric composites, J. Appl. Polym. Sci., 106, 3521–3528 (2007).

F. Suhara, S. K. N. Kutty, G. B. Nando, Rheological properties of short polyester fiber- polyurethane elastomer composite Polym. Plast. Tech. Eng., 36, 399–409 (1997).

S. Solarski, S. Benali, M. Rochery, E. Devaux, M. Alexandre, F. Monteverde, P. Dubois, Synthesis of a polyurethane/clay nanocomposite used as coating: Interactions between the counterions of clay and the isocyanate and incidence on the nanocomposite structure, J. Appl. Polym. Sci., 95, 238–244 (2005).

Z. Petrović, J. Ferguson, Polyurethane elastomers, Prog. Polym. Sci., 16, 695–836 (1991).

K. Chrissafis, D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers, Thermochim. Acta., 523, 1–24 (2011).

N. Grassie, G. Scott, Polymer degradation and stability, Cambridge, University Press, London, 1985.

M. G. Lu, J. Y. Lee, M. J. Shim, S. W. Kim, Thermal degradation of film cast from aqueous polyurethane dispersions J. Appl. Polym. Sci., 85, 2552–2558 (2002).

Z. S. Petrovic, Z. Zavargo, J. H. Flynn, W. J. Macknight, Thermal degradation of segmented polyurethanes, J. Appl. Polym. Sci., 51, 1087–1095 (1994).

X. Gao, B. Zhou, Y. Guo, Y. Zhu, X. Chen, Y. Zheng, W. Gao, X. Ma, Z. Wang Z, Synthesis and characterization of well-dispersed polyurethane/CaCO3 nanocomposites, Colloid. Surface. A., 371, 1–7 (2010).

I. Javni, Z. S. Petrović, A. Guo, R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci., 77, 1723–1734 (2000).

J. Jin, M. Song, K. J. Yao, A MTDSC analysis of phase transition in polyurethane–organoclay nanocomposites, Thermochim. Acta., 447, 202–208 (2006).

S. Y. Moon, J. K. Kim, C. Nah, Y. S. Lee, Polyurethane/montmorillonite nanocomposites prepared from crystalline polyols, using 1,4-butanediol and organoclay hybrid as chain extenders, Eur. Polym. J., 40, 1615–1621 (2004).

Y. I. Tien, K. H. Wei, Thermal transitions of montmorillonite/polyurethane nanocomposites, J. Polym. Res., 7, 245–250 (2000).

H. Jiang, J. Qian, Y. Bai, M. Fang, X. Qian, Preparation and properties of polyurethane/montmorillonite nanocomposites cured under room temperature, Polym. Composite., 27, 470–474 (2006).

Y. I. Tien, K. H. Wei, The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane,

J. Appl. Polym. Sci., 86, 1741–1748 (2002).

L. Gomes Lage, Y. Kawano, Thermal degradation of biomedical polyurethanes. A kinetic study using high-resolution thermogravimetry, J. Appl. Polym. Sci., 79, 910–919 (2001).

R. A. Azzam, S. K. Mohamed, R. Tol, V. Everaert, H. Reynaers, B. Goderis, Synthesis and thermomechanical characterization of high performance polyurethane elastomers based on heterocyclic and aromatic diamine chain extenders, Polym. Degrad. Stabil., 92, 1316–1325 (2007).

H. Nishizaki, K. Yoshida, J.H. Wang, Comparative study of various methods for thermogravimetric analysis of polystyrene degradation, J. Appl. Polym. Sci., 25, 2869–2877 (1980).

D. Filip, D. Macocinschi, S Vlad, Thermogravimetric study for polyurethane materials for biomedical applications, Comp. Part-Eng. B., 42, 1474–1479 (2011).

Z. Petrović, Z. Zavargo, Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements, J. Appl. Polym. Sci., 32, 4353–4367 (1986).

Downloads

Published

2013-12-01

How to Cite

Pavličević, J., Špírková, M., Bera, O., Jovičić, M., Mészáros Szécsényi, K., & Budinski-Simendić, J. (2013). The influence of bentonite and montmorillonite addition on thermal decomposition of novel polyurethane/organoclay nanocomposites. Macedonian Journal of Chemistry and Chemical Engineering, 32(2), 319–330. https://doi.org/10.20450/mjcce.2013.442

Issue

Section

Materials Chemistry

Most read articles by the same author(s)