Study of the mechanism of nitrophenols sorption on expanded perlite ‒ equilibrium and kinetics modelling

Zvezdana Yaneva, Bogdana Koumanova, Nedyalka Georgieva

Abstract


The adsorption behavior of 2-nitrophenol (2-NP) and 2,4-dinitrophenol (2,4-DNP) on expanded perlite (EP) at equilibrium and kinetic conditions was investigated. The experimental equilibrium data were interpreted by Langmuir, Freundlich, Redlich–Peterson, Temkin and the multilayer isotherm models. Both the Temkin and the multilayer models gave the most satisfactory representation of the experimental data for 2-NP sorption on EP covering the whole concentration range, presuming high initial sorption rate, presence of adsorbent-adsorbate chemical interactions and multilayer adsorption, as the basic characteristics featuring the equilibrium behavior of the system studied. The experimental kinetic results were analyzed by the pseudo-first, pseudo-second order models, Bangham’s model, intra-particle diffusion model, and Elovich kinetic equation. The values of the calculated rate, mass transfer parameters and correlation coefficients proved that chemisorptions/intraparticle diffusion could be outlined as the basic rate controlling mechanisms during 2-NP/2,4-DNP sorption on expanded perlite. Uptake of nitrophenols increased in the order 2-NP < 2,4-DNP.

Keywords


adsorption; nitrophenols; expanded perlite; equilibrium; kinetics modelling

Full Text:

PDF

References


N. Z. Al-Mutairi, 2,4-Dinitrophenol adsorption by date seeds: Effect of physico-chemical environment and regeneration study, Desalination 250, 892–901 (2010).

US Environmental Protection Agency, Water-related Environmental Fate of 129 Priority Pollutants: Volume II: Office of Water Planning and Standards, Office of Water and Waste Management, U.S. Environmental Protection Agency, Washington, D.C., (1979).

L. Virginia, A. Gemini, T. Valeria, C. Daniel, P. Estela, K. Sonia, Microbial degradation and detoxification of 2,4-dinitrophenol in aerobic and anoxic processes, Int. Biodeterior. Biodegrad. 60, 226–230 (2007).

S. Zonglian, G. Mengchun, J. Chunji, C. Youyuan, Y. Jianwei, Toxicity and biodegradation of 2, 4-dinitrophenol and 3-nitrophenol in anaerobic systems, Process Biochem. 40, 3017–3024 (2005).

K. Swayampakula, V. M. Boddu, S. K. Nadavala, K. Abburi, Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent, J. Haz. Mat. 170, 680–689 (2009).

T. Mathialagan, T. Viraraghavan, Adsorption of cadmium from aqueous solutions by perlite, J. Haz. Mater. B94, 291–303 (2002).

B. Koumanova, Z. Yaneva, Low cost adsorbents for the removal of nitrophenols from wastewaters, Management of Intentional and Accidental Water Pollution, NATO Security through Science Series, Springer, 263–275 (2006).

B. Koumanova, P. Peeva-Antova, Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite, J. Haz. Mat. 90, 229–234 (2002).

Z. Yaneva, B. Koumanova, V. Meshko, Dynamic studies of nitrophenols adsorption on perfil in a fixed-bed column: Application of single and two resistance model, Water Sci. Technol. 62.4, 883–891 (2009).

P. Ye, A. T. Lemley, Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT, Wat. Res. 43, 1303–1312 (2009).

M. Majdan, M. Bujacka, E. Sabah, A. G1adysz- P1aska, S. Pikus, D. Sternik, Z. Komosa, A. Padewski, Unexpected difference in phenol sorption on PTMA- and BTMA-bentonite, J. Environ. Management 91, 195–205 (2009).

Z. Yaneva, B. Koumanova, Comparative modeling of mono- and dinitrophenols sorption on yellow bentonite from aqueous solutions, J. Colloid Interface Sci. 293, 303–311 (2006).

C. Muсiz-Lopez, J. Duconge, R. Roque-Malherbe, Paranitrophenol liquid-phase adsorption in dealuminated Y zeolite, J. Colloid Interface Sci. 329, 11–16 (2009).

T. Sismanoglu, S. Pura, Adsorption of aqueous nitrophenols on clinoptilolite, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 180 (2001) 1–6.

Z. Kircheva, G. Oltean, D. Covaciu, B. Koumanova, M. Zitaru, Equilibrium study of 4-nitrophenol adsorption on natural materials from aqueous solutions, J. Univ. Chem. Technol. Met. (Sofia) 39, 343–350 (2004).

B. Koumanova, P. Peeva, S. J. Allen, K. A. Gallagher, M. G. Healy, Biosorption from aqueous solutions by egg-shell membranes and Rhizopus Oryzae: Equilibrium and kinetic studies, J. Chem. Technol. Biotechnol. 77, 539–545 (2002).

S. J. Allen, B. Koumanova, Z. Kircheva, S. Nenkova, Adsorption of 2-nitrophenol by Technical Hydrolysis Lignin: Kinetics, Mass Transfer and Equilibrium Studies, Ind. Eng. Chem. Res. 44, 2281–2287 (2005).

F. Delval, G. Crini, J. Vebrel, Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product, Bioresource Technol. 97, 2173–2181 (2006).

M. Dogan, M. Alkan, Removal of methyl violet from aqueous solution by perlite, J. Colloid Interface Sci. 267, 36–41 (2003).

M. Roulia, A. A. Vassiliadis, Interactions between C. I. Basic Blue 41 and aluminosilicate sorbents, J. Colloid Interface Sci. 291, 37–44 (2005).

M. Dogan, M. Alkan, Y. Onganer, Adsorption of Methylene Blue from aqueous solution onto perlite, Water, Air and Soil Pollution 120, 229–248 (2000).

M. Alkan, M. Dogan, Adsorption of copper(II) onto perlite, J. Colloid Interface Sci. 243, 280–291 (2001).

H. Ghassabzadeh, A. Mohadespour, M. Torab- Mostaedi, P. Zaheri, M. G. Maragheh, H. Taheri, Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite, J. Haz. Mat. 177, 950–955 (2010).

S. K. R. Yadanaparthi, D. Graybill, R. von Wandruszka, Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters - Review, J. Haz. Mat. 191, 1–15 (2009).

I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38, 2221 (1916).

H. Freundlich, Über die Adsorption in Lösungen, J. Phys. Chem. 57, 385–470 (1907).

O. Redlich, D. L. Peterson, A useful adsorption isotherm, J. Phys. Chem. 63, 1024–1026 (1959).

M. J. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysis, Acta Physicochim. USSR 12, 217–222 (1940).

J. Wang, C. P. Huang, H. E. Allen, D. K. Cha, D. W. Kim, Adsorption characteristics of dye onto sludge particulates, J. Colloid Interface Sci. 208, 518–528 (1998).

S. Lagergren, Zur Theorie der sogenannten adsorption gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24, 1–39 (1898).

Y. S. Ho, G. McKay, Kinetic model for lead(II) sorption onto peat, Ads. Sci. Technol. 16, 243–255 (1998).

Z. Roginsky, Ya. Zeldovich, Acta Phys. Chem. USSR 1, 554 (1934).

S. H. Chien, W. R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption on solids, Am. J. Soil Sci. Soc. 44, 265–268 (1980).

C. Aharoni, S. Sideman, E. Hoffer, Adsorption of phosphate ions by colloid ioncoated alumina, J. Chem. Technol. Biotechnol. 29, 404–412 (1979).

W. J. Weber, J. C. Morris, Kinetics of adsorption on carbon from solutions, J. Sanitary Eng. Div. ASCE 89, 31–60 (1963).

Y. Kim, C. Kim, I. Choi, S. Rengraj, J. Yi, Arsenic removal using mesoporous alumina prepared via a templating method, Environ. Sci. Technol. 38, 924– 931 (2004).

P. Barkakati, A. Begum, M. L. Das, P. G. Rao, Adsorptive separation of Ginsenoside from aqueous solution by polymeric resins: Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J. 161, 34–45 (2010).

M. Alkan, O. Demirbas, M. Dogan, Removal of Acid Yellow 49 from aqueous solutions by adsorption, Fresenius Environmental Bulletin 13 (11a), 1112– 1121 (2004).




DOI: http://dx.doi.org/10.20450/mjcce.2012.61

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Zvezdana Yaneva, Bogdana Koumanova, Nedyalka Georgieva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.