Magnetron sputtered iridium oxide as anode catalyst for PEM hydrogen generation

Evelina P. Slavcheva

Abstract


Thin films of iridium oxide are deposited by reactive magnetron sputtering. The influence of oxygen partial pressure in the sputtering plasma on the composition, surface structure and morphology of the films has been studied by XRD, SEM, AFM and XPS analysis. An optimal combination of sputtering parameters yields stable microporous amorphous films with highly extended fractal surface. The electrochemical properties of these films are investigated in view of their application as catalysts for PEM water splitting, using the electrochemical techniques of cyclovoltammetry and steady state polarization. A morphology factor assessing the catalyst active surface for a series of sputtered samples with varying thickness/loading is determined and correlated to the catalytic efficiency. It has been proven that iridium oxide is a very efficient catalyst for oxygen evolution reaction (OER). The best performance with anodic current density of 0.3 A cm–2; at potential of 1.55 V (vs. RHE) shows the 500 nm thick film containing 0.2 mg cm-2; catalyst. These results combined with the established long-term mechanical stability of the sputtered iridium oxide films (SIROFs) prove the advantages of the reactive magnetron sputtering as simple and reliable method for preparation of catalysts with precisely controlled composition, loading, and surface characteristics.

Keywords


iridium oxide catalysts; reactive magnetron sputtering; thin films; composition, surface structure and morphology; anodic process; PEM hydrogen generation

Full Text:

PDF

References


P. Millet, M. Pineri, R. Durand, New Solid Polymer Electrolyte composites for water electrolysis, J. Appl. Electrochem., 19 (1989), 162.

Y. Nishimura, K.Yashuda, Z. Siroma, K. Asaka, High current density solid polymer electrolyte water electrolysis, Denki kagaku oyobi kogyo butsuri kagaku, 65 (1997), 1122.

E. Rasten, G. Hagen, R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte, Electrochim. Acta, 48 (2003), 3945.

S. A. Grigoriev, V. I. Porembsky, V. N. Fateev, Pure hydrogen production by PEM electrolysis for hydrogen energy, Int. J. Hydrogen Energy, 31 (2006), 171.

A. Marshall, B. Børresen, G. Hagen, M. Tsypkin, R. Tunold, Electrochemical characterisation of IrxSn1−x O2 powders as oxygen evolution electrocatalysts, Electrochim. Acta, 51 (2006), 3161.

F. Andolfatto, R. Durand, A. Michas, P. Millet, P. Stevens, F. Andolfatto, R. Durand, A. Michas, P. Millet, P. Stevens, Int. J. Hydrogen Energy 19 (1994) 421.

R. O’ Hayre, S.-J. Lee, S.-W. Cha, F.B. Prinz, A Sharp Peak in the Performance of Sputtered Platinum Fuel Cells at Ultra-Low Platinum Loading, J. Power Sources, 109 (2002), 483.

D. Gruber, N. Ponath, J.Müller, F. Lindstaedt, Sputter-deposited ultra-low catalyst loadings for PEM fuel cells, J. Power Sources, 150 (2005), 67.

D. R. McIntyre, A. Vossen, J. R.Wilde, G. T. Burstein, Electrocatalytic properties of a nickel– tantalum–carbon alloy in an acidic electrolyte, J. Power Sources, 108 (2002), 1.

T. Teda, H. Igarashi, H. Uccida, M. Watanabe, Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc., 146 (1999), 3750.

M. M. Jaksic, Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions, Int. J. Hydrogen Energy, 26 (2001), 559.

E. Antolini, Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Mat. Chem. Phys., 78 (2003), 563.

H. Boenemann, R. Richards, Nanoscopic metal parEur. J. Inorg. Chem., (2001), 2455.

H. J. Cho, H. Horii, C. S. Hwang, J. W. Kim, C. S. Kang, B. T. Lee, S. I. Lee, Y. B. Koh, and M. Y. Lee, Preparation and Characterization of Iridium Oxide Thin Films Grown by DC Reactive Sputtering, Jap. J. Appl. Phys. Part 1, 36 (1997), 1722.

C. U. Pinnow, I. Kasko, N. Nagel, S. Poppa, T. Mikolajick, C. Dehm, W. Hosler, F. Bleyl, F. Jahnel, M. Seibt, U. Geyer, and K. Samwer, Influence of deposition conditions on Ir/IrO2 oxygen barrier effectiveness, J. Appl. Phys., 91 (2002), 9591.

16. H. S. Lee, W. S. Um, K. T. Hwang, H. G. Shin, Y. B. Kim, and K. H. Auh, Ferroelectric properties of Pb(Zr, Ti)O3 thin films deposited on annealed IrO2 and Ir bottom electrodes, J. Vac. Sci. Techn. A 17 (1999) 2939

17. T. Pauporte, D. Aberdam, J. L. Hazemann, R. Faure, and R. Durand, X-ray absorption in relation to valency of iridium in sputtered iridium oxide films, J. Electroanal. Chem. 465 (1999) 88

N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Structural and analytical characterization of an iridium oxide thin layer, Thin Solid Films, 235 (1993), 35.

R. H. Horng, D. S. Wuu, L. H. Wu, M. K. Lee, Formation process and material properties of reactive sputtered IrO2 thin films, Thin Solid Films, 373 (2000), 231.

E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Sputtered iridium oxide films for water splitting via PEM electrolysis, Electrochim. Acta, 52 (2007), 3889.

S. Thanawala, D. G. Georgiev, R. J. Baird, G. Auner, Characterization of Iridium Oxide Films Deposited by Pulsed-Direct-Current Reactive Sputtering, Thin Solid Films, 515 (2007), 7059.

S. Gottesfeld, S. Srinivasan, Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction, J. Electroanal. Chem., 86 (1978), 89.

J. O. Zerbino, N. R. de Tacconi, A. J. Arvia, The Activation and Deactivation of Iridium Electrodes in Acid Electrolytes, J. Electrochem. Soc., 125 (1978), 1266.

S. Hackwood, L. M. Schiavone,W. C. Dautremont- Smith, G. Beni, “Anodic Evolution of Oxygen on Sputtered Iridium Oxide Films, J. Electrochem. Soc., 128 (1981), 2569.

C. Bock, V. I. Birss, Anion and water involvement in hydrous Ir oxide redox reactions in acidic solutions, J. Electroanal. Chem., 475 (1999), 20.

E. Slavcheva, R. Vitushinsky, W. Mokwa, U. Schnackenberg, Sputtered Iridium Oxide Films as Charge Injection Material for Functional Electrostimulation, J. Electrochem. Soc., 151 (2004), E226.

I. S. Lee, C. N. Whang, K. Choi, M. S. Choo, Y. H. Lee, Characterization of iridium film as a stimulating neural electrode, Biomaterials, 23 (2002), 2375.

L. A. Da Silva, V. A. Alves, M. A. P. Da Silva, S. Trasatti, J. F. C. Boodts, Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM Electrochim. Acta, 42 (1997), 271.

T. M. Silva, A. M. P. Simoes, M. G. S. Ferreira, M.Walls, M. Da Cunha Belo, Electronic structure of iridium oxide films formed in neutral phosphate buffer solution, J. Electroanal. Chem., 44 (1998), 5.

S. B. Brummer, L. S. Robblee, F. T. Hambrecher, Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations, Ann. N.Y. Acad. Sci., 405 (1983), 159.

S. B. Brummer and M. T. Turner, Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes, IEEE Trans. Biomed. Eng., BME-24 (1977), 59.

S. Trasatti, Electrocatalysis: understanding the success of DSA®, Electrochim. Acta, 45 (2000), 2377.

L. A. Da Silva, V. A.Alves, S. C. de Castro, J. F. C. Boodts, XPS study of the state of iridium, platinum, titanium and oxygen in thermally formed IrO2+TiO2+PtOX films, Colloid Surf. A: Physicochem. Eng. Aspects, 170 (2000), 119.

D. Labou, E. Slavcheva, U. Shnakenberg, S. Neophythides, Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode, J. Power Sources, 185 (2008), 1073.




DOI: http://dx.doi.org/10.20450/mjcce.2011.69

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Evelina P. Slavcheva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.