Minerals as a source of novel Li-ion battery electrode materials

Authors

  • Anti Liivat Uppsala University
  • Josh Thomas Uppsala University

DOI:

https://doi.org/10.20450/mjcce.2015.647

Keywords:

minerals, Li-ion battery, electrodes, cathodes

Abstract

As a tribute to the major contribution made by Academician Gligor Jovanovski to the field of Mineralogy in Macedonia, this paper promotes the potential role that minerals can have as a future source of inspiration in identifying novel materials for sustainable energy storage in general, and for advanced Li-ion batteries in particular. We exemplify this by indicating the innovative use of polyanions in novel Li-ion battery cathode materials such as the olivine lithium iron phosphate (LiFePO4), and in an even newer material – the orthosilicate lithium iron silicate (Li2FeSiO4). Both materials have strong intrinsic links to mineralogy – and illustrate well how mineralogy can lead to new material breakthroughs in this and other areas of modern technology.

Author Biographies

Anti Liivat, Uppsala University

Dept. of Chemistry

Assistant Professor

Josh Thomas, Uppsala University

Department of Chemistry

Professor Emeritus

References

G. Jovanovski, B. Boev, P. Makreski, Minerals from the Republic of Macedonia,

Macedonian Academy of Sciences and Arts, Skopje, 2012.

M.M. Thackeray, From gems to lithium battery electrodes: the significance of the diamond, ruby (sapphire), spinel and peridot structures, J. Power Sources, 97-98, 7-12 (2001).

Plato, Timaeus, 48b.

S.F. Tie, C.W. Tan, A review of energy sources and energy management systems in electric vehicles, Renew. Sust. Energy Rev., 20, 82-102 (2013).

A. Yamada, Iron-based materials strategies, MRS Bulletin, 39, 423-428 (2014).

M.M. Thackeray, W.I.F. David, J.B. Goodenough, Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0

M.M. Thackeray, P.J. Johnson, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Electrochemical extraction of lithium from LiMn2O4, Mat. Res. Bull., 19, 179-187 (1984).

M. Valvo, F. Lindgren, U. Lafont, F. Björefors, K. Edström, Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide, J. Power Sources, 245, 967-978 (2014).

A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144, 1188-1194 (1997).

A.S. Andersson, J.O. Thomas, B. Kalska, L. Häggström, Thermal stability of LiFePO4-based cathodes, Electrochem. Solid-State Letts., 3, 66-68 (2000).

N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, Electroactivity of natural and syntetic triphylite, J. Power Sources, 97-98, 503-507 (2001).

A.M. Fransolet, D. Antenucci, J.M. Speetjens, P. Tarte, An X-ray determinative method for the divalent-cation ratio in the triphylite-lithiophilite series, Mineral. Mag., 48, 373-381 (1984).

A.M. Fransolet, The phosphate mineral associations of the Tsaobismund pegmatite, Namibia, Contrib. Mineral. Petrol., 92, 502-517 (1986).

M. Herstedt, M. Stjerndahl, A. Nytén, T. Gustafsson, H.Rensmo, H. Siegbahn, N. Ravet, M. Armand, J.O. Thomas, K. Edström, Surface chemistry of carbon-treated LiFePO4 particles for Li-ion battery cathodes studied by PES, Electrochem. Solid-State Letts., 6, A202-A206 (2003).

H. Huang, S.C. Yin, L.F. Nazar, Approaching theoretical capacity of LiFePO4 at room

temperature at high rates. Electrochem. Solid-State Letts., 4, A170-A172 (2001).

Z.H. Chen, J.R. Dahn, Reducing carbon in LiFePO4/C composite electrodes to maximize

specific energy, volumetric energy, and tap density, J. Electrochem. Soc., 149,

A1184-A1189 (2002).

N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand,

Improved iron based cathode material, Abstract #127, 196th ECS Meeting, Hawaii,

-22 October 1999.

K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0

cathode material for batteries of high-energy density, Mat. Res. Bull., 15, 783-789 (1980).

P. Tarte, R. Cahay, Synthesis and structure of a new series of Li2X(II)GeO4 and

Li2X(II)SiO4 structurally related to Li3PO4, C. R. Acad. Sci. Paris, 139C, 777 (1970).

B. Monnaye, C. Carrault, G. Perez, R. Bouaziz, Family of double lithium orthogermanates

- crystal-structure of Li2MgGeO4, C. R. Acad. Sci. Paris, 278C, 251-253 (1974).

A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochemical

performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Comm., 7,

-160 (2005).

A. Nytén, S. Kamali, L. Häggström, T. Gustafsson, J.O. Thomas, The lithium

extraction/insertion mechanism in Li2FeSiO4, J. Mater. Chem., 16, 2266-2272 (2006)

A. Nytén, M. Stjerndahl, H. Rensmo, H. Siegbahn, M. Armand, T. Gustafsson, K. Edström,

J.O. Thomas, Surface characterization and stability phenomena in Li2FeSiO4 studied by

PES/XPS, J. Mater. Chem., 16, 3483-3488 (2006).

R. Dominko, M. Bele, M. Gaberšček, A. Meden, M. Remškar, J. Jamnik, Structure and

electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode

materials, Electrochem. Comm., 8, 217-222 (2006).

A. Liivat, J.O. Thomas, Solid State Ionics, 192, 58-64 (2011).

A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek,J. Jamnik, Beyond one-electron

reaction in Li cathode materials: designing Li2MnxFe1-xSiO4, Chem. Mater, 19, 3633-3640

(2007).

Downloads

Published

2015-05-25

How to Cite

Liivat, A., & Thomas, J. (2015). Minerals as a source of novel Li-ion battery electrode materials. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 145–149. https://doi.org/10.20450/mjcce.2015.647

Issue

Section

Materials Chemistry