Structural and spectroscopic characterization oF N’-[(1E)-(4-fluorophenyl)methylidene]thiophene-2-carbohydrazide, a potential precursor to bioactive agents

Monirah Abdel-Rahman Al-Alshaikh, S Muthu, Ebtehal S Al-Abdullah, E Elamurugu Porchelvi, Siham Lahsasni, Ali Abdel-Rahman El-Emam

Abstract


In this study, vibrational spectral analysis of the title compound was carried out using FT-IR and FT-Raman spectroscopy in the range of 500−4000 cm−1. The vibrational analysis was aided by an electronic structure calculation based on the B3LYP/6-311++G(d,p) basis set. The molecular equilibrium geometries, IR and Raman intensities and harmonic vibrational frequencies were computed. The assignments were based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra was proposed. The complete vibrational assignments were performed based on the potential energy distribution (PED). The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. In addition, the first-order hyperpolarizability, NBO, HOMO and LUMO energies, Fukui function and the molecular electrostatic potential were computed.

Keywords


DFT; FT-IR spectra; FT-Raman spectra; Fukui function; N’-(arylmethylidene)-thiophene-2-carbohydrazide

Full Text:

PDF

References


H. H. Fox, Synthetic tuberculstats. I. Pyridine carboxylic acid derivatives, J. Org. Chem. 17, 542-546 (1952). DOI: http://dx.doi.org/10.1021/jo01138a005

H. H. Fox, J. T. Gibas, Synthetic tuberculstats. IX. Dialkyl derivatives of isonicotinylhydraziine, J. Org. Chem. 20, 60-69 (1955). DOI: http://dx.doi.org/10.1021/jo01119a010

A. Manvar, A. Bavishi, A. Radadiya, J. Patel, V. Vora, N. Dodia, K. Rawal, A. Shah, Diversity oriented design of various hydrazides and their in vitro evaluation against Mycobacterium tuberculosis H37Rv strains, Bioorg. Med. Chem. Lett. 21, 4728-4731 (2011). DOI: http://dx.doi.org/10.1016/j.bmcl.2011.06.074

A. Manvar, A. Malde, J. Verma, V. Virsodia, A. Mishra, K. Upadhyay, H. Acharya, E. Coutinho, A. Shah, Synthesis, anti-tubercular activity and 3D-QSAR study of coumarin-4-acetic acid benzylidene hydrazides, Eur. J. Med. Chem. 43, 2395-2403 (2008). DOI: http://dx.doi.org/10.1016/j.ejmech.2008.01.016

R. Maccari, R. Ottanà, M. G. Vigorita, In vitro advanced antimycobacterial screening of isoniazid-related hydrazones, hydrazides and cyanoboranes: Part 14, Bioorg. Med. Chem. Lett. 15, 2509-2513 (2005). DOI: http://dx.doi.org/10.1016/j.bmcl.2005.03.065

P. Kumar, B. Narasimhan, P. Yogeeswari, D. Sriram, Synthesis and antitubercular activities of substituted benzoic acid N′-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides. Eur. J. Med. Chem. 45, 6085-6089 (2010). DOI: http://dx.doi.org/10.1016/j.ejmech.2010.08.030

F. Martins, S. Santos, C. Ventura, R. Elvas-Leitão, L. Santos, S. Vitorino, M. Reis, V. Miranda, H. F. Correia, J. Aires-de-Sousa, V. Kovalishyn, D. A. R. S. Latino, J. Ramos, M. Viveiros, Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity, Eur. J. Med. Chem. 81, 119-138 (2014). DOI: http://dx.doi.org/10.1016/j.ejmech.2014.04.077

A. Özdemir, G. Turan-Zitouni, Z. A. Kaplancikli, Y. Tunali, Synthesis and biological activities of new hydrazide derivatives, J. Enzyme Inhib. Med. Chem. 24, 825-831 (2009). DOI: http://dx.doi.org/10.1080/14756360802399712

G. L. Backes, D. M. Neumann, B. S. Jursic, Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides, Bioorg. Med. Chem. 22, 4629-4636 (2014). DOI: http://dx.doi.org/10.1016/j.bmc.2014.07.022

P. Vicini, F. Zani, P. Cozzini, I. Doytchinova, Hydrazones of 1,2-benzisothiazole hydrazides: Synthesis, antimicrobial activity and QSAR investigations, Eur. J. Med. Chem. 37, 553-564 (2001). DOI: http://dx.doi.org/10.1016/S0223-5234(02)01378-8

K. A. Metwally, L. M. Abdel-Aziz, E. S. Lashine, M. I. Husseiny, R. H. Badawy, Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents, Bioorg. Med. Chem. 14, 8675-8682 (2006). DOI: http://dx.doi.org/10.1016/j.bmc.2006.08.022

G. Turan-Zitouni, M.D. Altıntop, A. Özdemir, F. Demirci, U. Abu Mohsen, Z. A. Kaplancıklı, Synthesis and antifungal activity of new hydrazide derivatives, J. Enzyme Inhib. Med. Chem. 28, 1211-1216 (2013). DOI: http://dx.doi.org/10.3109/14756366.2012.723208

Z. Garkani-Nejad, B. Ahmadi-Roudi, Modeling the antileishmanial activity screening of 5-nitro-2-heterocyclic benzylidene hydrazides using different. chemometrics methods, Eur. J. Med. Chem. 45, 719-726 (2010). DOI: http://dx.doi.org/10.1016/j.ejmech.2009.11.019

K. M. Khan, M. Rasheed, Z. Ullah, S. Hayat, F. Kaukab, M. I. Choudhary, Atta ur-Rahman, S. Perveen, Synthesis and in vitro leishmanicidal activity of some hydrazides and their analogues, Bioorg. Med. Chem. 11, 1381-1387 (2003). DOI: http://dx.doi.org/10.1016/S0968-0896(02)00611-9

D. Kumar, V. Judge, R. Narang, S. Sangwan, E. De Clercq, J. Balzarini, B. Narasimhan, Benzylidene/2-chlorobenzylidene hydrazides: Synthesis, antimicrobial activity, QSAR studies and antiviral evaluation, Eur. J. Med. Chem. 45, 2806-2816 (2010). DOI: http://dx.doi.org/10.1016/j.ejmech.2010.03.002

H. -Z. Zhang, J. Drewe, B. Tseng, S. Kasibhatla, S. X. Cai, Discovery and SAR of indole-2-carboxylic acid benzylidene-hydrazides as a new series of potent apoptosis inducers using a cell-based HTS assay, Bioorg. Med. Chem. 12, 3649-3655 (2004). DOI: http://dx.doi.org/10.1016/j.bmc.2004.04.017

S. S. Machakanur, B. R. Patil, D. S. Badiger, R. P. Bakale, K. B. Gudasi, S. W. Annie Bligh, Synthesis, characterization and anticancer evaluation of novel tri-arm star shaped 1,3,5-triazine hydrazones, J. Mol. Struct. 1011, 121-127 (2012). DOI: http://dx.doi.org/10.1016/j.molstruc.2011.12.023

W. Liao, C. Xu, X. Ji, G. Hu, L. Ren, Y. Liu, R. Li, P. Gong, T. Sun, Design and optimization of novel 4-(2-fluorophenoxy)quinoline derivatives bearing a hydrazine moiety as c-Met kinase inhibitors, Eur. J. Med. Chem. 87, 508-518 (2014). DOI: http://dx.doi.org/10.1016/j.ejmech.2014.09.095

C. M. Moldovan, O. Oniga, A. Pârvu, B. Tiperciuc, P. Verite, A. Pîrnău, O. Crişan, M. Bojiţă, R. Pop, Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole, Eur. J. Med. Chem. 46, 526-534 (2011). DOI: http://dx.doi.org/10.1016/j.ejmech.2010.11.032

D. Hadjipavlou-Litina, A. Samadi, M. Unzeta, J. Marco-Contelles, Analysis of the antioxidant properties of differently substituted 2- and 3-indolyl carbohydrazides and related derivatives, Eur. J. Med. Chem. 63, 670-674 (2013). DOI: http://dx.doi.org/10.1016/j.ejmech.2013.03.014

S. G. Küçükgüzel, A. Kocatepe, E. De Clercq, F. Şahin, M. Güllüce, Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide, Eur. J. Med. Chem. 41, 353-359 (2006). DOI: http://dx.doi.org/10.1016/j.ejmech.2005.11.005

S. J. Gilani, S. A. Khan, O. Alam, V. Singh, A. Arora, Thiazolidin-4-one, azetidin-2-one and 1,3,4-oxadiazole derivatives of isonicotinic acid hydrazide: synthesis and their biological evaluation, J. Serb. Chem. Soc. 76, 1057-1067 (2011). DOI: http://dx.doi.org/10.2298/JSC101104092G

K. Ilango, S. Arunkumar, Synthesis, antimicrobial and antitubercular activities of some novel trihydroxy benzamido azetidin-2-one derivatives, Trop. J. Pharm. Res. 10, 219-229 (2011).

M. Ishii, S. D. Jorge, A. A. de Oliveira, F. Palace-Berl, I. Y. Sonehara, K. F. M. Pasqualoto, L.C. Tavares, Synthesis, molecular modeling and preliminary biological evaluation of a set of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole as potential antibacterial, anti-Trypanosoma cruzi and antifungal agents, Bioorg. Med. Chem. 19, 6292-6301 (2011). DOI: http://dx.doi.org/10.1016/j.bmc.2011.09.009

H. Hamdi, V. Passarelli, A. Romerosa, Synthesis, spectroscopy and electrochemistry of new 4-(4-acetyl-5-substituted-4,5-dihydro-1,3,4-oxodiazol-2-yl)methoxy)-2H-chromen-2-ones as a novel class of potential antibacterial and antioxidant derivatives, Compt. Rend. Chim. 14, 548-555 (2011). DOI: http://dx.doi.org/10.1016/j.crci.2010.11.001

G. S. Hassan, A. A. El-Emam, M. L. Gad, A. M. Barghash, Synthesis, antimicrobial and antiviral testing of some new 1-adamantyl analogues, Saudi Pharm. J. 18, 123-128 (2010). DOI: http://dx.doi.org/10.1016/j.jsps.2010.05.004

G. V. S. Kumar, Y. Rajendraprasad, B. P. Mallikarjuna, S. M. Chandrashekar, C. Kistayya, Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents, Eur. J. Med. Chem. 45, 2063-2074 (2010). DOI: http://dx.doi.org/10.1016/j.ejmech.2010.01.045

A. A. El-Emam, K. A. Alrashood, M. A. Al-Omar, A. –M. S. Al-Tamimi, Synthesis and antimicrobial activity of N′-heteroarylidene-1-adamantylcarbohydrazides and (±)-2-(1-adamantyl)-4-acetyl-5-[5-(4-substituted phenyl-3-isoxazolyl)]-1,3,4-oxadiazolines, Molecules 17, 3475-3483 (2012). DOI: http://dx.doi.org/10.3390/molecules17033475

R. Mishra, R. Kumar, S. Kumar, J. Majeed, M. Rashid, S. Sharma, Synthesis and in vitro antimicrobial activity of some triazole derivatives, J. Chil. Chem. Soc. 55, 359-362 (2010). DOI: http://dx.doi.org/10.4067/S0717-97072010000300019

A. M. Alanazi, S. Lahsasni, A. A. El-Emam, S. W. Ng, N’-[(1E)-(4-fluorophenyl)methylidene]-thiophene-2-carbohydrazide. Acta Cryst. E68, o314 (2012). DOI: http://dx.doi.org/10.1107/S1600536811056121

H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem. 3, 214-218 (1982). DOI: http://dx.doi.org/10.1002/jcc.540030212

Gaussian 03 Program, Gaussian Inc., Wallingford, CT (2004).

M. Govindarajan, M. Karabacak, S. Periandy, D. Tanuja, Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline, Spectrochim. Acta A 97, 231-245 (2012). DOI: http://dx.doi.org/10.1016/j.saa.2012.06.014

J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh (1996).

G. Keresztury, S. Holly, J. Varga, G. Bensenyei, A. Y. Wang, J. R. Durig, Vibrational spectra of monothiocarbamates II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate, Spectrochim. Acta A 49, 2007-2017 (1993). DOI: http://dx.doi.org/10.1016/S0584-8539(09)91012-1

G. Fogarasi, P. Pulay (J. R. Durig, Ed.), Vibtional Spectra and Structure, Vol. 14, Elsevier, Amsterdam (1985).

S. Muthu, E. E. Porchelvi, M. Karabacak, A. M. Asiri, S. S. Swathi, Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone, J. Mol. Struct. 1081, 400-412 (2015). DOI: http://dx.doi.org/10.1016/j.molstruc.2014.10.024

J. P. Hermann, D. Ricard, J. Ducuing, Optical nonlinearities in conjugated systems: β-carotene, Appl. Phys. Lett. 23, 178-180 (1973). DOI: http://dx.doi.org/10.1063/1.1654850

A. Ben Ahmed, H. Feki, Y. Abid, H. Boughzala, C. Minot, A. Mlayah, Crystal structure, vibrational spectra and theoretical studies of L-histidinium dihydrogen phosphate-phosphoric acid, J. Mol. Struct. 920, 1-7 (2009). DOI: http://dx.doi.org/10.1016/j.molstruc.2008.09.029

V. Karunakaran, V. Balachandran, FT-IR, FT-Raman spectra, NBO, HOMO–LUMO and thermodynamic functions of 4-chloro-3-nitrobenzaldehyde based on ab initio HF and DFT calculations, Spectrochim. Acta A 98, 229-239 (2012). DOI: http://dx.doi.org/10.1016/j.saa.2012.08.003

N. R. Sheela, S. Muthu, S. Sampathkrishnan, A. A. Al-Saadi, Normal co-ordinate analysis, molecular structural, non-linear optical, second order perturbation studies of tizanidine by density functional theory, Spectrochim. Acta A 139, 189-199 (2015). DOI: http://dx.doi.org/10.1016/j.saa.2014.11.065

C. James, A. A. Raj, R. Reghunathan, V. S. Jayakumar, I. H. Joe, Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N,N-dimethyl benzylidene)cyclohexanone using density functional theory, J. Raman Spectrosc. 37, 1381-1392 (2006). DOI: http://dx.doi.org/10.1002/jrs.1554

Y. Ataly, D. Avci, A. Başoğlu, Linear and non-linear optical properties of some donor-acceptor oxadiazoles by ab initio Hartree-Fock calculations, Struct. Chem. 19, 239-246 (2008). DOI: http://dx.doi.org/10.1007/s11224-007-9278-3

T. Vijayakumar, I. H. Joe, C. P. R. Nair, V. S. Jayakumar, Efficient π electrons delocalization in prospective push-pull non-linear optical chromophore 4-[N,N-dimethylamino]-4′-nitro stilbene (DANS): A vibrational spectroscopic study, Chem. Phys. 343, 83-99 (2008). DOI: http://dx.doi.org/10.1016/j.chemphys.2007.10.033

S. Muthu, S. Renuga, Vibrational spectra and normal coordinate analysis of 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate, Spectrachim. Acta A 132, 313-325 (2014). DOI: http://dx.doi.org/10.1016/j.saa.2014.05.009

K. Fukui, Theory of orientation and Stereo Selection, Springer Verlag, Berlin, 1975.

D. F. V. Lewis, C. loannides, D. V. Parke, Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure-activity relationships, Xenobiotica 24, 401-408 (1994). DOI: http://dx.doi.org/10.3109/00498259409043243

R. Hoffmann, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures, VCH Publishers, New York, 1988.

J. U. Maheswari, S. Muthu, T. Sundiu, QM/MM methodology, docking and spectroscopic (FT-IR/FT-Raman NMR, UV) and Fukui function analysis on adrenergic agonist, Spectrochim. Acta A 137, 841-855 (2015). DOI: http://dx.doi.org/10.1016/j.saa.2014.07.095

N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, CCLIB: A library for package-independent computational chemistry algorithms, J. Comput. Chem. 29, 839-845 (2008). DOI: http://dx.doi.org/10.1002/jcc

K. Bhavani, S. Renuga, S. Muthu, K. Sankaranarayanan, Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2-acetoxybenzoic acid by density functional methods, Spectrochim. Acta A 136, 1260-1268 (2015). DOI: http://dx.doi.org/10.1016/j.saa.2014.10.012

R. Shahidha, S. Muthu, E. M. Porchelvi, M. Govindarajan, Normal coordinate analysis and vibrational spectroscopy (FT-IR and FT-Raman) studies of 5-methyl-N-[4-(trifluoromethyl) phenyl]-isoxazole-4-carboxamide using density functional method, Spectrochim. Acta A 132, 142-151 (2014). DOI: http://dx.doi.org/10.1016/j.saa.2014.04.173

M. Silverstein, G. C. Bassler, C. Morril, Spectroscopic identification of organic compounds, fifth Ed., John Wiley & Sons Inc., Singapore, 1991.

E. B. Wilson, J. C. Decius, P. C. Cross, Molecular vibrations, Dover Publications Inc., New York, 1980.

G. Socrates, Infrared and Raman characteristic group Frequencies. Tables and charts, third ed., John Wiley, New York, 2001.

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to infrared and Raman spectroscopy, Academic Press, New York, 1990.

F. R. Dollish, W. G. Fateley, F. F. Benteley, Characteristic Raman frequencies of organic compounds, Wiley, New York, 1997.

G. Varasanyi, Vibrational spectra of benzene derivatives, Academic Press, New York (1969).

M. H. Jamróz, J. Cz. Dobrowolski, R. Brzozowski, Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study, J. Mol. Struct. 787, 172-183 (2006). DOI: http://dx.doi.org/10.1016/j.molstruc.2005.10.044

S. Muthu, A. Prabhakaran, Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method, Spectrochim. Acta A 129, 184-192 (2014). DOI: http://dx.doi.org/10.1016/j.saa.2014.03.050

V. S. Madhavana, H. T. Vargheseb, S. Mathewc, J. Vinsovad, C. Y. Panicker, FT-IR, FT-Raman and DFT calculations of 4-chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl acetate, Spectrochim. Acta A 72, 547-553 (2009). DOI: http://dx.doi.org/10.1016/j.saa.2008.10.061

M. Arivazhagan, V. Krinshnakumar, R. J. Xavier, G. Elango, V. Balachandran, FT-IR, FT-Raman, scaled quantum chemical studies of the structure and vibrational spectra of 1,5-dinitronaphthalene, Spectrachim. Acta A 72, 941-946 (2009). DOI: http://dx.doi.org/10.1016/j.saa.2008.12.016

A. Atac, M. Karabacak, C. Karacaa, E. Kose, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of nicotinic acid N-oxide: A combined experimental and theoretical study, Spectrochim. Acta A 85, 145-154 (2012). DOI: http://dx.doi.org/10.1016/j.saa.2011.09.048

E. E. Porchelvi, S. Muthu, Vibrational spectra, molecular structure, natural bond orbital, first order hyperpolarizability, thermodynamic analysis and normal coordinate analysis of salicylaldehyde p-methylphenylthiosemicarbazone by density functional method, Spectrochim. Acta A 134, 453-464 (2015). DOI: http://dx.doi.org/10.1016/j.saa.2014.06.018

R. G. Parr, W. Yang, Functional theory of atoms and molecules, Oxford University press, New York, 1989.

P. W. Ayers, R. G. Parr, Variational principals for describing chemical reactions: The Fukui function and chemical hardness revisted, J. Am. Chem. Soc. 122, 2010-2018 (2000). DOI: http://dx.doi.org/10.1021/ja9924039

S. Renuga, M. Karthikesan, S. Muthu, FTIR and Raman spectra, electronic spectra and normal coordinate analysis of N,N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine by DFT method, Spectrochim. Acta A 127, 439-453 (2014). DOI: http://dx.doi.org/10.1016/j.saa.2014.02.068

P. K. Chattaraj, B. Maiti, U. Sarkar, Philicity: A unified treatment of chemical reactivity and selectivity, J. Phys. Chem. A 107, 4973-4975 (2003). DOI: http://dx.doi.org/10.1021/jp034707u

[69] C. Morell, A. Grand, A. Toro-Labbe, New dual descriptor for chemical reactivity, J. Phys. Chem. A 109, 205-212 (2005). DOI: http://dx.doi.org/10.1021/jp046577a VIEW ITEM




DOI: http://dx.doi.org/10.20450/mjcce.2016.811

Refbacks





Copyright (c) 2016 Monirah Abdel-Rahman Al-Alshaikh, S Muthu, Ebtehal S Al-Abdullah, E Elamurugu Porchelvi, Siham Lahsasni, Ali Abdel-Rahman El-Emam

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.