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The objective of this study was to investigate the adsorption/desorption behavior of oleuropein on 

different types of silk fibroin matrices including silk fibroin microfibers (MF), regenerated silk fibroin 
(RSF), and silk fibroin nanofibers (NF). Nanofibers with an average diameter of ranging between 24 and 
326 nm were successfully prepared using the electrospinning technique. The effects of the silk fibroin 
concentration, the voltage applied and the distance between needle tip and collector plate on the morphol-
ogy of the NF were investigated. The adsorption capacities of MF, RSF and NF were determined as 
104.92, 163.07 and 228.34 mg oleuropein per gram of material, respectively. The percentage of initially 
adsorbed oleuropein that was desorbed was 86.08, 91.29 and 96.67% for MF, RSF and NF, respectively. 

NF and RSF discs loaded with oleuropein were subjected to disc diffusion assays to determine 
their antibacterial activity against test microorganisms Staphylococcus epidermidis (Gram +) and Esche-
richia coli (Gram – ). The results showed that both biomaterials possessed antibacterial properties after 
loading with oleuropein. Wound scratch assays using oleuropein released from NF revealed an enhance-
ment of cell migration, indicating a wound healing property of the material. 

In conclusion, the NF can be utilized as a biofunctional polymeric material with better perfor-
mance for the adsorption and desorption of oleuropein compared with MF and RSF. 
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АТСОРПЦИЈА/ДЕСОРПИЦИЈА И БИОФУНКЦИОНАЛНИ КАРАКТЕРИСТИКИ  

НА ОЛЕУРОПЕИН НАНЕСЕН НА РАЗЛИЧНИ ТИПОВИ МАТРИЦИ ОД СВИЛЕН ФИБРОИН  

 
Целта на ова истражување беше да се испитаат атсорпционите/десорпционите својства на 

олеуропеин нанесен на различни типови матрици од свилен фиброин: фиброински микровлакна 
(MF), регенериран фиброин од свила (RSF) и нановлакна од фиброин од свила (NF). Со техниката 
за електрично предење успешно беа подготвени нановлакната со просечен пресек од 24 до 326 nm. 
Беше испитано влијанието на концентрацијата на свилениот фиброин, применетиот напон и 
растојанието меѓу врвот на иглата и колекторската плоча врз морфологијата на NF. Беше утврдено 
дека атсорпционите капацитети на MF, RSF и NF изнесуваат, соодветно, 104,92, 163,07 и 228,34 
mg олеуропеин на грам материјал. Процентот на иницијално атсорбиран олеуропеин што се 
десорбира изнесуваше соодветно, 86,08, 91,29 и 96,67% за MF, RSF и NF. 

Дисковите со NF и RSF со нанесен олеуропеин беа подложени на тестови со дифузија на 
дискот за да се определи нивната антибактериска активност за микроорганизми на Staphylococcus 
epidermidis (Gram +) и Escherichia coli (Gram – ). Резултатите покажаа дека двата материјала имаат 
антибактериски својства откако ќе им се додаде олеуропеин. Тестовите со третирање на рани од 
гребнатинки со употреба на олеуропеин ослободен од NF покажаа подобрување на миграцијата не 
клетките, што укажува дека материјалот има својство на лекување на рани. 

Се заклучува дека NF може да се користи како биофункционален полимерен материјал кој 
има подобри својства за атсорпција и десорпција на олеуропеин во споредба со MF и RSF. 
 

Клучни зборови: нановлакна; свилен фиброин; електрично предење; олеуропеин; биоактивност 
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1. INTRODUCTION 

 

Nanofibers have desirable properties such as 

interconnected ultra-fine pore structures, high sur-

face area, and biodegradability and can show ex-

ceptional performance in biomedical applications 

[1, 2].
 
In addition, they can be used in many indus-

trial areas such as in medical textiles, in protective 

materials, in agriculture and in filtration [3, 4]. 

Nanofibers can be prepared using several 

techniques such as phase separation, melt-blowing, 

self-assembly, template synthesis and electrospin-

ning. Among these techniques, electrospinning is 

usually preferred as it allows versatility in the con-

trol of the size of nanofibers, convenience for scale-

up, and flexibility in terms of the materials used for 

nanofiber production [5]. Different biopolymers, 

such as collagen, silk fibroin, hyaluronic acid, and 

zein can be used to prepare nanofibers by electro-

spinning [2, 6, 7]. The silk fibroin used in this study 

is an important natural biopolymer and has been 

used to prepare electro-spun nanofibers that are used 

in many biotechnological applications such as in 

medical textiles, drug delivery and tissue scaffold-

ing [8]. Besides its electrospinability, its biocompat-

ibility and good mechanical and anti-inflammatory 

properties make silk fibroin a good candidate for 

tissue scaffold and wound dressing applications [5]. 
Silk fibroin has recently been used for the prepara-

tion of different forms of biomaterials for biotech-

nological applications as well [9–13]. It has also 

been investigated as a drug delivery carrier in the 

form of films, hydrogels, 3D matrices, and nano-

structures. The available technologies for the devel-

opment of silk based biomaterials, which can effec-

tively deliver bioactive molecules including small 

drugs, proteins and genes, are well described in the 

literature [14]. These technologies for the prepara-

tion of drug delivery systems are based on a change 

in secondary structure of the silk fibroin from a ran-

dom coil to a β-sheet form, allowing the control of 

drug release kinetics [15].  

The antimicrobial properties of functional 

nanofibers that include antimicrobial agents such 

as silver ions have been reported in the literature 

[16, 17]. However, less toxic, naturally occurring 

antimicrobial agents are still needed for biotechno-

logical applications. Recently, nanofibers incorpo-

rating bioactive natural compounds have received 

much attention for biomedical and tissue engineer-

ing applications [5, 6].  There is intense interest in 

the use of plant-derived natural compounds having 

different bioactivities for many biotechnological 

applications [18]. These natural compounds can be 

used in pharmaceutical preparations, cosmetic 

products, and food supplements due to their antiox-

idant, antimicrobial and anti-inflammatory proper-

ties [19]. Among them, oleuropein, the major com-

ponent of olive leaf extract, has great potential for 

destroying microorganisms and free radicals that 

cause diseases and adverse effect on human health 

[20]. Therefore, incorporation of oleuropein as a 

bioactive natural compound into silk fibroin nano-

fibers was investigated in this study.  

In the literature, most studies have focused on 
the characterization of silk fibroin based materials 
[21]. Recently, silk fibroin nanofibers have been 
evaluated in vitro and in vivo as potential biomateri-
als [22, 23]. However, there are only a few articles in 
the literature about the incorporation of natural com-
pounds into silk fibroin nanofibers [24, 25]. In sever-
al studies, nanofibers incorporating natural com-
pounds have been prepared by electrospinning poly-
mer blend solutions including natural compounds 
[26, 27]. However, natural compounds have a ten-
dency to lose their stability along with their bioactivi-
ties due to interactions with other components in 
blend solutions and under harsh conditions. Instead 
of directly mixing natural compounds into polymer 
solutions for electrospinning, it would be better to 
either prepare coaxial nanofibers encapsulating natu-
ral compounds in the core region [6], or to adsorb the 
natural compounds selectively on the surface of pre-
pared nanofibers to avoid stability problems [5].  

Adsorption can be considered as one of the 
best methods for incorporating oleuropein from 
olive leaf extract into silk fibroin nanofibers. Not 
only is this method efficient and convenient, but it 
is also applicable to small and large scale produc-
tion of bioactive nanofibers. Several researchers 
have studied the potential applications of raw silk 
fibroin incorporating polyphenolic natural com-
pounds [28]. In particular, the hydrophobic interac-
tions between olive leaf polyphenols including 
oleuropein and silk fibroin have recently been ex-
amined [29], and very satisfactory results were 
obtained based on the amount of oleuropein ad-
sorbed on the surface of silk fibroin fibers. Thus, 
the adsorption and desorption of oleuropein present 
in olive leaf extract (OLE) was investigated using 
silk fibroin nanofibers in the present study. 

To the best of our knowledge, there is no arti-

cle about the adsorption of oleuropein as a natural 

compound on to silk fibroin nanofibers. Therefore, 

in this study, different forms of silk fibroin struc-

tures including MF, RSF and NF were first prepared 

and were then compared based on their characteris-

tics for the adsorption and desorption of oleuropein 

[5]. In addition, the wound healing and antibacterial 

properties of oleuropein on NF were studied using 

wound scratch and disc diffusion assays.  
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2. EXPERIMENTAL 

 

2.1. Plant materials and chemicals 
 

Olive leaves (Olea europaea) were collected 
from trees in Urla-İzmir. In all extraction experi-
ments, analytical grade ethanol (C2H5OH) was used 
and was purchased from Merck (Germany). Silk 
Fibroin (SF) was obtained in raw form from the 
Bursa Institute for Silkworm Research (Bursa, Tur-
key). In order to remove sericin, silk samples were 
boiled in sodium carbonate (99.5+ % purity) solu-
tion purchased from Aldrich (Germany). Sodium 
sulfide hydrate provided by Fluka (Switzerland) and 
sulfuric acid (98+ % purity) from Merck (Germany) 
were used in the preparation of dialysis tubing (MW 
Cut-off: 12–14 kDa, Sigma (USA)). Calcium chlo-
ride-2-hydrate (CaCl2·2H2O) was supplied by 
Riedel-de Haën (Germany) and used for the prepa-
ration of aqueous silk fibroin solution. Formic acid 
(98+ % purity) was purchased from Merck (Germa-
ny). HPLC grade acetonitrile from Sigma-Aldrich 
(Germany) and HPLC grade acetic acid from Merck 
(Germany) were used for the mobile phase of High 
Performance Liquid Chromatography (HPLC) anal-
yses. The syringes and needles used in electrospin-
ning experiments for the preparation of nanofibers 
were purchased from local medical suppliers. Ultra-
pure water was used in all experiments. 

The methods used in this study can be divid-

ed into three main parts. The first part was the 

preparation and characterization of the olive leaf 

extract. The second part was the preparation of 

different forms of silk fibroin including MF, RSF 

and NF by degumming, freeze drying and electro-

spinning, respectively. The third part was the ad-

sorption of olive leaf phenolic compounds on MF, 

RSF, and selected NF. Finally, desorption of olive 

leaf phenolic compounds from these different 

forms of silk fibroin materials was investigated. 

 

2.2. Preparation of crude olive leaf extracts [5] 
 

Fresh olive leaves were first washed with 
deionized water and then dried in an oven at 35 ºC 
(Memmert UFP 800TS) for three days. After 
grinding of the dried olive leaves with a grinder, 
extraction was performed in 70% aqueous ethanol 
solution with a solid-liquid ratio of 1:20 for 5 
hours, at 180 rpm and room temperature in a bench 
top orbital shaker (Thermo MaxQ-4000). The ex-
tract was vacuum-filtered and evaporated using a 
rotary evaporator (Heidolph laborata 4001) to re-
move the ethanol under vacuum at 35 °C. The 
aqueous phase of the extract was centrifuged at 
4000 rpm for 5 min to remove solid residues. The 

liquid aqueous extracts were first frozen and then 
lyophilized using a Telstar cryodos-50 freeze drier 
for three days. After lyophilizate, dry crude extracts 
were obtained. The crude olive leaf extracts were 
stored in glass bottles in a dark, cool, dry place for 
use in further experiments. 
 

2.3. HPLC analysis of the prepared olive leaf extract 
 

An HPLC instrument (Hewlett-Packard Se-

ries HP 1100) with a diode array detector was used. 

A LiChrospher® RP-18 analytical column contain-

ing a silica gel carrier with C-18 reversed phase 

properties (250 mm × 4 mm i.d.; particle size 5 mm) 

and thermostated at 30 ºC was chosen as the station-

ary phase. The flow rate was 1ml min
–1

 and absorb-

ance changes were monitored at 280 nm. For HPLC 

analysis, a previously reported method was used 

[29]. Briefly, the mobile phases for chromatograph-

ic analysis were: (A) acetic acid/water (2.5 : 97.5) 

and (B) acetonitrile. A linear gradient was run from 

95% (A) and 5% (B) to 75% (A) and 25% (B) over 

20 min; it was then changed to 50% (A) and 50% 

(B) over 20 min (40 min, total time); then during the 

next 10 min it was changed to 20% (A) and 80% 

(B) (50 min, total time), with 10 min of re-

equilibration (60 min, total time) to return to the 

initial composition. Following the HPLC analysis, 

the concentration and abundance of oleuropein in 

the samples was determined based on a calibration 

curve of an oleuropein standard (purity ≥ 90%, Ex-

trasynthese, Genay Cedex, France). 

 

2.4. Preparation of silk fibroin microfibers (MF) 

and aqueous silk fibroin solution 
 

Raw silk was boiled in an aqueous solution 

of 0.05% sodium carbonate (50 times v/w) for 30 

min to remove the glue-like, sticky sericin sur-

rounding fibroin fibers. This degumming process 

was repeated three times. The degummed silk was 

then washed several times with distilled water and 

left to dry under ambient conditions to obtain MF. 

Aqueous silk fibroin solution was obtained 

by dissolving 1.2 g MF in 20 (v/w) CaCl2/distilled 

water/ethanol (molar ratio 1:8:2) by stirring at 78 

ºC for 2 h, followed by dialysis at 4–8 ºC for three 

days to remove neutral salts [30].  

 

2.5. Preparation of regenerated silk fibroin (RSF) 
 

Aqueous silk fibroin solution was filtered 

through filter paper and the collected solution was 

freeze-dried for five days in order to obtain com-

pletely dry material. At the end of this process, silk 
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fibroin in the form of a foam was obtained and des-

ignated ‘Regenerated Silk Fibroin (RSF)’. 

 

2.6. Preparation of silk fibroin nanofibers (NF)  

by electrospinning 
 

A defined amount of RSF cut into small piec-
es was mixed with formic acid to obtain a silk fibro-
in polymer solution of the desired concentration. 
The polymer solution was stirred overnight and then 
stored for use in electrospinning experiments. 

An electrospinning setup including a high 

voltage power supply (Iseg Spezialelektronik GmbH, 

Rossendorf, Germany), and a syringe pump (New 

Era Pump Systems NE300, USA) was used to pre-

pare silk fibroin nanofibers.  

A glass syringe with a needle of tip diameter 

0.6 mm was filled with silk fibroin polymer solu-

tion and inserted into the syringe pump. The flow 

rate of the pump was adjusted to 6 ml/h. The fibers 

were deposited on a constant target of aluminum 

foil at 17, 20 and 23 kV using five different poly-

mer concentrations (60, 80, 100, 120, 150 mg/ml). 

Two different distances between the needle tip and 

the target (10 and 15 cm) were used for the electro-

spinning experiments. 

 

2.7. Characterization of silk fibroin fibers using 

scanning electron microscopy (SEM) 
 

Images recorded with a Scanning Electron 

Microscope (Philips XL 30S FEG and FEI Quanta 

FEG, Eindhoven, Holland) were used to observe 

the morphology of the fibers at the micro and nano 

scales. The samples were coated by gold sputtering 

in an argon atmosphere before SEM analysis. The 

average diameter of the fibers was determined by 

analyzing 100 randomly chosen fibers with ImageJ 

measurement and visualization software. 

 

2.8. Adsorption and desorption of oleuropein 
 

One of the most important parts of this study 

was the adsorption of olive leaf polyphenols onto 

the NF. MF and RSF were also used for adsorption 

studies. HPLC was used in all steps to determine 

the amount of adsorbed oleuropein. Finally, the 

oleuropein adsorption capacities of these three 

structures were compared and the results were ex-

pressed as mg oleuropein/g silk material.  

First, the crude olive leaf extract was dis-
solved in ultra-pure water. The initial concentra-
tion (Ci) of the extract solution was set as 100 mg 
crude extract/ml [5]. Before incorporating the ex-
tract into the silk fibroin materials (MF, RSF, NF), 
HPLC analysis of the crude extract was performed 

in order to determine the initial oleuropein content. 
Then, 1 g of silk fibroin material (MF, RSF, NF) 
was placed into 10 ml (Ci=100 mg crude ex-
tract/ml) of extract solution.  The silk fibroin mate-
rial in the extract solution was shaken at 150 rpm, 
25 ºC for 5 hours. Every hour, a sample (20 μl) 
was taken and analyzed by HPLC. Finally, using 
the data obtained over five hours and based on the 
HPLC chromatograms, the adsorbed amount of 
oleuropein was determined [5].   

After adsorption, polyphenolic compound 
loaded silk fibroin materials (MF, RSF, NF) were 
obtained. First, silk fibroin materials were placed 
into 10 ml water medium (Ci=0 mg/ml) and shaken 
at 150 rpm for 5 hours at 25 ºC. Every hour, a 
sample (20 μl) was taken and analyzed by HPLC. 
The data obtained over five hours were analyzed 
and, based on the HPLC chromatograms, the 
amount of desorbed oleuropein from the three 
structures was compared and the results were ex-
pressed as mg oleuropein/g silk material. All ex-
periments were performed in triplicate. 
 

2.9. Antibacterial tests of regenerated silk fibroin 

(RSF) and silk fibroin nanofibers (NF)  

loaded with oleuropein 
 

Cultured Staphylococcus epidermidis (Gram 
+) and Escherichia coli (Gram – ) bacteria were 
incubated in Petri dishes containing nutrient agar. 
Discs with a diameter of approximately 10 mm 
were cut from the RSF and NF materials. The discs 
were sterilized under UV light for 30 minutes be-
fore disc diffusion tests were performed. RSF and 
NF discs loaded with oleuropein were placed on the 
Petri dishes containing the bacterial cultures. After 
incubation at 37 °C overnight, inhibition zones 
around the discs and on the contacted surfaces were 
observed. In antibacterial tests, sterile discs with 
antibiotics including vancomycin (VA), gentamicin 
(CN) and penicillin (P) were used as positive con-
trols. RSF and NF discs without oleuropein were 
prepared and used as negative controls. All experi-
ments were carried out in duplicate. 

 

2.10. Wound scratch assays 
 

NIH-3T3 cells were grown in DMEM sup-
plemented with 2 mM L-glutamine, 10% fetal bovine 
serum (FBS), and 1% penicillin–streptomycin in an 
atmosphere of 5% carbon dioxide (CO2) at 37ºC.  

The effect of oleuropein desorbed from the 
NF into the medium during 5 hours of cell migra-
tion was determined using a wound scratch assay 
(scratching a straight line with a thickness of 800 
µm). Following incubation, the media was re-
placed with medium containing desorbed oleuro-
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pein from the NF. The closure of the cell-free re-
gion by cell migration was observed using a phase 
contrast inverted microscope after 24 hours. All 
experiments were carried out in duplicate. 
 

 

3. RESULTS AND DISCUSSION 
 

3.1. Morphological characterization of nanofibers 
 

The morphologies of the electrospun NF 

were investigated using the SEM images presented 

in Figures 1 and 2. Each SEM image was scaled 

using ImageJ software to determine the average 

diameter of the fibers. Nanofibers were prepared 

using two different distances between the needle 

tip and the target (10 and 15 cm), three distinct 

voltages (17, 20 and 23 kV) and five silk fibroin 

concentrations (60, 80, 100, 120 and 150 mg/ml). 

The average diameters of the prepared nanofibers 

are shown in Table 1. 

 

 

 
 

Fig. 1. SEM images of the prepared silk fibroin nanofibers under different electrospinning conditions  

with a constant distance of 10 cm between the tip and the collector plate 
 

 

T a b l e  1 
 

The average diameters of prepared silk fibroin 

nanofibers under different electrospinning 

conditions 
 

  Concentration (mg/ml) 

Distance 

(cm) 

Voltage 

(kV) 
60 80 100 120 150 

10 

17 32 63 118 156 376 

20 28 52 92 147 328 

23 26 45 85 140 318 

15 

17 28 45 95 123 294 

20 25 43 75 117 268 

23 24 40 73 115 264 

 

 

Table 1 shows that the average diameter of 

the nanofibers varied between 24 to 376 nm. By 

changing the parameters of the electrospinning 

process and the polymer solution, nanofibers with 

a wide range of sizes could be obtained. If the con-

centration of the silk fibroin polymer solution was 

increased, the average diameter of the nanofibers 

increased significantly. On the other hand, the av-

erage diameter of the nanofibers decreased with 

increasing distance between the syringe needle and 

the collector plate. Another important parameter 

affecting the size of the nanofibers was the applied 

voltage. When the voltage was increased, the di-

ameter of nanofibers decreased to a certain degree.  

On close examination of Figure 1, the effect 

of changing the silk fibroin polymer concentration 

on the diameter of fibers can be clearly seen at the 

relatively high silk fibroin concentration value of 

120 mg/ml. Also, there was an apparent increase in 

the size of the nanofibers at concentrations be-

tween 60 and 120 mg/ml with a significant change 
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occurring at a silk fibroin concentration of 150 

mg/ml. 

A similar effect can be seen in Figure 2. The 

same electrospinning experiments were performed 

using a distance of 15 cm between the tip and the 

collector plate. Although the average diameter of 

the fibers decreased with increasing voltage, the 

effect of the applied voltage on the sizes of the 

nanofibers was not as significant as that of the silk 

fibroin concentration. 

As seen in Figures 1 and 2, the morphology 

of the nanofibers varied as the electrospinning pa-

rameters were changed. Bead formation could 

clearly be seen in all nanofibers prepared using 60 

mg/ml silk fibroin solution at the different applied 

voltages and distances between tip and the collec-

tor plate. Electrospun nanofibers with beads have 

been commonly reported when the concentration 

of the solution or the molecular weight of the pol-

ymer used is low. Many studies in the literature 

have shown that low molecular weight/concentra-

tion/viscosity, high surface tension, and low charge 

density are the main factors contributing to bead 

formation [31]. By increasing the silk fibroin con-

centration in the electrospinning solution, bead 

formation was avoided and uniform nanofibers 

without beads were produced. The effect of the 

applied voltage on the morphology of the nano-

fibers can be observed in Figure 1. At a silk fibroin 

concentration of 80 mg/ml and an applied voltage 

of 17 or 20 kV, nanofibers still exhibited bead 

formation, but when the applied voltage was in-

creased to 23 kV, the bead structures no longer 

formed, resulting in uniform nanofibers. In the lit-

erature, similar observations are also recorded for 

Nylon6 nanofibers prepared by electrospinning. 

Both the applied voltage and the distance were re-

ported as effective parameters for controlling the 

diameter and size distribution of the Nylon6 

nanofibers [32]. 

In our study, one set of nanofibers was cho-

sen in order to investigate the adsorption capacity 

of nanofibers for the polyphenols from olive leaf 

extract. The nanofibers prepared with a polymer 

solution containing 100 mg/ml of silk fibroin elec-

trospun at an applied voltage of 20 kV and with a 

distance of 10 cm between the syringe needle and 

the collector plate were selected for further exper-

iments. Under these electrospinning conditions, the 

prepared nanofibers were well separated from each 

other. Uniform nanofibers with a no-bead confor-

mation were formed with a relatively small aver-

age size, and thus a higher external surface area for 

the adsorption of oleuropein. The expectation of 

better adsorption and desorption performance for 

nanofibers with a higher surface area led us to 

choose the nanofibers prepared under these elec-

trospinning conditions for further use in adsorp-

tion/desorption, antimicrobial activity and wound 

healing studies. 
 

 

 
 

Fig. 2. SEM images of the prepared silk fibroin nanofibers under different electrospinning conditions with a constant distance 

of 15 cm between the tip and the collector plate. 
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3.2. Morphological characterization of silk fibroin 

MF and RSF 
 

The morphology of the two different forms of 

silk fibroin (RSF and MF) was also investigated and 

compared with the silk fibroin nanofibers. In Figure 

3, silk fibroin structures and their properties can be 

seen. The photo and the SEM image on the left in 

Figure 3 belong to MF obtained after degumming of 

raw silk material. The microfibers were then dis-

solved in CaCl2.2H2O/EtOH/H2O solution to obtain 

an aqueous silk fibroin solution. After dialysis and 

freeze drying, RSF was prepared. This form pre-

sented a foam-like appearance as seen in the photo-

graph and SEM image in the center of Figure 3. Fi-

nally, RSF was dissolved in formic acid to form a 

silk fibroin polymer solution, and NF was prepared 

by electrospinning. The photograph and SEM image 

on the right in Figure 3 show the silk fibroin nano-

fibers prepared with a polymer solution containing 

silk fibroin at 80 mg/ml with an applied voltage of 

20 kV and a distance of 10 cm between the syringe 

needle and the collector plate. 

 
 

 
 

Fig. 3. Photographs and SEM images of silk fibroin microfibers (MF), regenerated silk fibroin (RSF) and nanofibers (NF) 
 
 

In addition, adsorption of olive leaf poly-

phenols on these different forms of silk fibroin ma-

terial was investigated. Olive leaf is rich in phenol-

ic content and oleuropein (ole) is the most abun-

dant compound in olive leaves. Therefore, HPLC 

analyses were performed in order to determine the 

adsorbed amount of oleuropein on different forms 

of silk fibroin materials. First, the initial concentra-

tion of oleuropein in the crude olive leaf extract 

was determined as 2.517 mg oleuropein/ml. An 

HPLC chromatogram of the olive leaf extract can 

be seen in Figure 4. Oleuropein was detected as a 

major compound among other phenolic com-

pounds eluted at 21 minutes.  

Adsorption experiments were performed for 

each form of the silk fibroin materials. Their ad-

sorption capacities are shown in Table 2. Initially 

there was no adsorbed oleuropein on the surfaces 

of the silk fibroin materials, therefore the initial 

oleuropein concentration was taken as zero (Ci = 0 

mg oleuropein/g silk fibroin material). The results 

in Table 2 show that the NF had a higher adsorp-

tion capacity for oleuropein compared with MF 

and RSF. The adsorption capacities were deter-

mined as 104.92, 163.07, and 228.34 mg oleuro-

pein per gram of silk material for MF, RSF and 

NF, respectively. 
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Fig. 4. HPLC chromatogram of olive leaf extract; Oleuropein (ole) 
 

 

T a b l e  2 
 

The amounts of adsorbed oleuropein on the surface 

of the silk fibroin microfibers (MF), regenerated 

silk fibroin (RSF) and nanofibers (NF) during  

five hours of adsorption experiments 
 

Time 

(minute) 

SF Microfiber 

(mg ole/g MF) 

RSF 

(mg ole/g RSF) 

SF Nanofiber 

(mg ole/g NF) 

0 0.00 0.00 0.00 

60 85.37 119.11 159.03 

120 96.51 142.70 205.40 

180 101.01 153.43 217.19 

240 103.06 160.51 222.54 

300 104.92 163.07 228.34 

 

 

 
 

Fig. 5. Adsorption of oleuropein on silk fibroin microfibers 

(MF), regenerated silk fibroin (RSF) and nanofibers (NF)  

over a five-hour period 
 

 

Figure 5 shows the adsorption profile of 

oleuropein on silk fibroin MF, RSF and NF. It can 

be clearly seen from the graph that silk fibroin 

nanofibers adsorbed the maximum amount of 

oleuropein. This can be attributed to the high sur-

face area of the nanofibers. Silk fibroin nanofibers 

are known to have a high surface area compared 

with other forms of silk fibroin. As seen in the 

HPLC chromatograms (Fig. 6), the amount of 

oleuropein in the adsorption medium decreased due 

to its adsorption on the surface of silk fibroin mate-

rials at the end of the five-hour period, indicating 

that the adsorption process was rather efficient. 

Desorption experiments were also per-

formed for each form of the silk fibroin materials. 

As seen in Table 3, the initial oleuropein concen-

trations of the silk fibroin materials were different 

due to their different adsorption capacities. There-

fore, the amounts of oleuropein adsorbed on the 

silk fibroin materials were taken as the initial con-

centrations for desorption experiments. During 

desorption, a sample was taken from the medium 

every hour and analyzed by HPLC. The initial 

concentration in the medium was taken as zero 

(Ci,medium = 0 mg) due to absence of oleuropein at 

the start of the experiment. Using the amount of 

desorbed oleuropein determined by HPLC, the 

amount of oleuropein remaining on the silk fibroin 

material was calculated and recorded in Table 3. 

The amount of oleuropein on the silk fibroin MF 

decreased from 104.92 to 14.61 mg oleuropein per 

gram of MF. However, the amount of oleuropein 

on the RSF decreased from 163.07 to 14.2 mg 

oleuropein per gram. On the other hand, the 

amount of oleuropein on the silk fibroin NF de-

creased from 228.34 to 7.6 mg oleuropein per 

gram. NF desorbed 96.67 % of the initially ad-

sorbed oleuropein, whereas MF and RSF desorbed 

only 86.08 and 91.29 % of the initially adsorbed 

oleuropein, respectively (Figure 7). 
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Fig. 6. HPLC chromatograms of initial adsorption medium and the medium after five-hour adsorption experiments 

with silk fibroin microfibers (MF), regenerated silk fibroin (RSF) and nanofibers (NF) 
 

 

T a b l e  3  
 

The amount of oleuropein on the surface of silk  

fibroin microfibers (MF), regenerated silk fibroin 

(RSF) and nanofibers (NF) during five-hour  

desorption experiments 
 

Time 

(minute) 

SF Microfiber 

(mg ole/g MF) 

RSF 

(mg ole/g 

RSF) 

SF Nanofiber 

(mg ole/g NF) 

0 104.92 163.07 228.34 

60 35.27 99.08 119.56 

120 17.97 57.81 70.52 

180 14.97 38.56 34.63 

240 14.85 22.57 10.41 

300 14.61 14.20 7.60 

 
 

 
 

Fig. 7. Percentages of oleuropein desorbed into the medium 

from silk fibroin microfibers (MF), regenerated silk fibroin 

(RSF) and nanofibers (NF) after five hours 
 
 

Figure 8 shows the desorption profiles of 

oleuropein for MF, RSF and NF. It can clearly be 

seen from the graph that NF desorbed the maxi-

mum amount of oleuropein, resulting in a lower 

amount of adsorbed oleuropein at the end of the 

five-hour desorption period. This can also be at-

tributed to the high surface area of nanofibers. As 

seen in the HPLC chromatograms (Fig. 9), the 

amount of oleuropein in the desorption medium in-

creased due to its desorption from the surface of the 

silk fibroin materials, indicating that the desorption 

as well as the adsorption was an efficient process.   
 
 

 
 

Fig. 8. Desorption of oleuropein from silk fibroin microfibers 

(MF), regenerated silk fibroin (RSF) and nanofibers (NF) 

 over five hours 
 
 

As can be seen from the HPLC chromato-

grams, MF, RSF and NF showed very satisfactory 

desorption profiles. The bioactive plant-derived 

compounds adsorbed on the nanofiber surfaces 

were effectively released into the medium. There-

fore, these kinds of bio-functional nanofibers in-

cluding bioactive plant compounds can be consid-

ered as potential candidates for novel medical ap-

plications. 
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Fig. 9. HPLC chromatograms of the initial desorption medium and the medium after five-hour desorption experiments  

with silk fibroin microfibers (MF), regenerated silk fibroin (RSF) and nanofibers (NF) 
 

 

In the literature, there are only a limited 

number of studies concerning the adsorption of 

polyphenols on silk fibroin. It was previously 

shown that olive leaf polyphenols can be adsorbed 

on unprocessed silk fibroin material [29]. The ad-

sorption of polyphenols on silk fibroin was at-

tributed to hydrophobic interactions and it was re-

ported that 96 mg of active compound per gram 

(oleuropein) could be adsorbed onto silk fibroin 

material. To the best of our knowledge, there is no 

previous article concerning the adsorption of 

oleuropein as a natural compound on silk fibroin 

nanofibers. The adsorption of oleuropein olive leaf 

extract onto silk fibroin nanofibers is very im-

portant because both silk fibroin and plant-derived 

bioactive components are natural. Therefore, their 

combinations are biocompatible and biodegrada-

ble. If these types of novel nanofibers containing 

natural compounds are used in wound healing ma-

terials, they should be able to adsorb and desorb 

their bioactive natural compounds effectively, as in 

the present study.   

 

3.3. Antibacterial tests and wound scratch assays 
 

In antibacterial tests, Gram-negative (E. 

coli) and Gram-positive (S. epidermidis) bacteria 

were used to determine the antibacterial properties 

of the materials. These bacteria are the most com-

mon isolates from chronic wounds. The cell wall in 

Gram positive bacteria consists of a single layer, 

whereas that in Gram negative bacteria consists of 

a multi-layered structure bounded by an outer cell 

membrane. This difference results in different lev-

els of antimicrobial resistance. Therefore, antibac-

terial activities of the materials against E. coli and 

S. epidermidis, which represent Gram negative and 

Gram positive bacteria, were determined. Figure 

10 shows the antibacterial test results of positive 

(+) and negative (–) controls for E. coli and S. epi-

dermidis. The inhibition zones around discs con-

taining gentamicin (CN), vancomycin (VA) and 

penicillin (P), can clearly be seen for both E. coli 

and S. epidermidis. The disc labeled as C is the 

control NF without oleuropein, which did not 

cause an inhibition zone for either species. This 

result is expected since there is no antibacterial 

agent (oleuropein) on the discs. The inhibition 

zones around NF and RSF discs loaded with 

oleuropein for the test microorganisms E. coli and 

S. epidermidis are shown in Figure 11. In both sides 

of the figure, the NF discs labeled A (1.50 mg 

oleuropein) and C (2.25 mg oleuropein) are loaded 

with lower and higher concentrations of oleuropein, 

respectively, while the RSF discs labeled B (2.90 

mg oleuropein) and D (4.00 mg oleuropein) are 

loaded with lower and higher concentrations of 

oleuropein, respectively. Both NF and RSF discs 

loaded with oleuropein exhibited inhibition zones 

for both E. coli and S. epidermidis. 

These results confirmed that the NF and 

RSF biomaterials possessed antibacterial properties 

after loading with oleuropein.  
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Fig. 10. Disc diffusion tests results for E. coli (left picture) 

and S. epidermidis (right picture): Sterile discs containing the 

antibiotics vancomycin (VA), gentamicin (CN) and penicillin 

(P) used as ( + ) control; NF disc without oleuropein used as  

( – ) control (C). 
 

 

 
 

Fig. 11. Disc diffusion tests for E. coli (left picture)  

and S. epidermidis (right picture): NF discs labeled A and C 

are loaded with lower and higher concentrations of oleuropein, 

respectively. RSF discs labeled B and D are loaded with lower 

and higher concentrations of oleuropein, respectively. 

In Figure 12, micrographs of wound scratch 

assays for untreated control cells (A) and cells 

treated with oleuropein (OLE) (B) from NF are 

shown. Oleuropein desorbed from the NF into the 

desorption medium over five hours was used to test 

its effect on cell migration. For this reason, the 

wound scratch assay was performed by scratching 

a straight line with a thickness of 800 µm. The clo-

sure of this cell-free zone was observed under an 

inverted phase contrast microscope after 24 hours. 

As seen in Figure 12, oleuropein (ole) from NF 

enhanced the cell migration and the width of the 

cell-free zone decreased significantly after 24 

hours compared with untreated control cells (Fig-

ure 12). The average cell-free widths of the 

scratched line after a 24-hour incubation period for 

untreated control cells (A) and cells treated with 

ole (B) from NF are shown in Figure 12. The ini-

tial cell-free width of 800 µm decreased to 300 and 

150 µm for untreated control cells (A) and cells 

treated with ole, respectively, as a result of cell 

migration. 

These results have shown that this type of 

novel nanofibers with adsorbed natural compounds 

could potentially be used in wound healing materi-

als, provided that they exhibit effective adsorp-

tion/desorption of the bioactive compounds effec-

tively as in the case of the silk fibroin nanofibers in 

the present study. 

 

 

 

 
 

Fig. 12. Micrographs of wound scratch assays and average widths of the cell-free scratched line after 24 hours of incubation.  

Untreated control cells (A) and cells treated with oleuropein (OLE) (B) from silk fibroin nanofibers (NF). 
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4. CONCLUSIONS 

 

Different forms of silk fibroin materials in-

cluding MF, RSF and NF were successfully pre-

pared by degumming, freeze drying and electro-

spinning, respectively. All of these silk fibroin ma-

terials effectively adsorbed and desorbed oleuro-

pein, which is the major compound with antioxidant 

and antimicrobial properties present in olive leaf 

extracts. The silk fibroin nanofibers were found to 

be much better at the adsorption and desorption of 

oleuropein when compared with MF and RSF.  

Nanofibers can be used in many industrial ap-

plications. Applications in the field of medical tex-

tiles will become more attractive in the future. In 

conclusion, as in the present case of oleuropein, natu-

ral compounds can be loaded into silk fibroin based 

nanofibers, which are a good candidate for the devel-

opment of novel biofunctional medical textiles. 
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