
SUPPLEMENTARY MATERIAL

Application of Voltammetry in Biomedicine – Recent Achievements in Enzymatic Voltammetry

Rubin Gulaboski¹, Valentin Mirceski^{2,3}

¹Faculty of Medical Sciences, "Goce Delcev" University, Stip, Macedonia ²Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Macedonia

² Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland

Figure S1. Surface EEC mechanism A(ads) + $n_1e^- \leftrightarrow B(ads) + n_2e^- \leftrightarrow C(ads) + S \leftrightarrow D(ads)$ in protein-film voltammetry: effect of the substrate concentration c(S) to the features of theoretical SW voltammograms. Voltammograms are simulated at potential separation of |400 mV| between both electrode steps: The values of $c(S)/\text{molL}^{-1}$ are set to: 0.0001 (a); 0.01 (b); and 0.05 (c). The value of chemical rate constant was set to $k_{\text{chem}} = 10 \text{ mol}^{-1}\text{Ls}^{-1}$. Equilibrium constant of follow-up chemical reaction was $K_{\text{eq}} = 1000$. All other simulation parameters were same as those in figure 3.

Figure S2. Surface EEC' regenerative mechanism A(ads) + n_1e - \leftrightarrow B(ads) + n_2e - \leftrightarrow C(ads) + S \rightarrow B(ads) in protein-film voltammetry: effect of the substrate concentration c(S) to the features of theoretical SW voltammograms. Values of $c(S)/molL^{-1}$ are set to: 0.0001 (a); 0.03 (b); 0.035 (c)and 0.05 (d). The value of catalytic rate constant was set to $k_c = 10 \text{ mol}^{-1}Ls^{-1}$. All other simulation parameters were same as those in figure 3.