
 

Macedonian Journal of Chemistry and Chemical Engineering, Vol. 28, No. 1, pp. 1–16 (2009) 
MJCCA9 – 529 ISSN 1857 – 5552 
Received: October 30, 2008 UDC: 544.723.2  
Accepted: February 2, 2009 

Rewiev 

APPLICATIONS OF NON-LINEAR FREQUENCY RESPONSE FOR INVESTIGATION 
OF ADSORPTION SYSTEMS 

Menka Petkovska 

Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade,  
Belgrade, Serbia 

menka@tmf.bg.ac.yu 

Two main directions of application of nonlinear frequency response and the concept of higher order frequency 
response functions (FRFs) in investigation of adsorption systems are presented, one for development of novel meth-
ods for investigation of equilibrium and kinetics of adsorption systems, and the other for fast estimation of periodic 
steady-states of cyclic adsorption processes. The main advantages of the nonlinear FR methods for estimation of ad-
sorption equilibrium and kinetics are: (1) It is possible to discriminate between different kinetic mechanisms and to 
select the correct one from the shapes of the second and higher order FRFs. (2) Both equilibrium and kinetic parame-
ters can be estimated from the FRFs. Different experimental arrangements are presented. Estimation of periodic 
steady-states of cyclic adsorption processes is illustrated on the example of periodic operation of an adsorption col-
umn with modulation of the inlet concentration and the column temperature. 
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ПРИМЕНА НА НЕЛИНЕАРЕН ФРЕКВЕНЦИСКИ ОДЗИВ ЗА ИСПИТУВАЊЕ  
НА АТСОРПЦИОНИТЕ СИСТЕМИ 

Vo trudot se prezentirani dva glavni pravca нa primenaта na nelinearniot frekвenциски od-
ziv i konceptot na frekвenцискиte prenosni funkcii (FPF) od povisok red za ispituvawe na atsorp-
cionite sistemi. Еднiot pravec se odnesuva na razvoj na novi eksperimentalni metodi za ispitu-
vawe na ramnote`ata i kinetikata na atsoрpcionite sistemi, dodeka drugiot se odnesuva na razvoj 
нa preсmetkovеn metod za pribli`no opredeluvawe na stacionarnata sostojba kaj cikli~nite at-
sorpcioni procesi. Najva`nite prednosti na metodот za ispituvawe na ramnote`ata i kinetikata 
na atsorpcija zasnovani na nelinearniot frekвенциски odziv se: (1) мo`nostа za identifikacija na 
vistinski kineti~ki mehanizam i soodvetеn matemati~ki model vrz osnova na oblikot na vtorata i 
povisokite FPF i (2) мo`nosta za opredeluvawe na ramnote`nite i kineti~kite parametri na mode-
lot od istite eksperimentalni podatoci. Vo trudot se prika`ani razli~ni tehni~ki re{enija na 
eksperimentalnite sistemi za primena na nelinearnite frekвenциски metodi. Od druga strana, 
metodоt za brzo pribli`no presmetuvawe na periodi~nata stacionarna sostojba na cikli~nite at-
sorpcioni procesi e razviena so cel da go zameni kompliciranoto i dolgotrajno numeri~ko re{a-
vawe na matemati~kite modeli za ovie procesi. Ovој metod e ilуstriran so primeri na periodi~na 
rabota na atsorpciona kolona so periodi~na promena na vleznata koncentracija i temperaturata 
na kolonata. 

Клучни зборови: frekвenцискi prenosni funkcii; atsorpcija; kinetika; ramnote`a;  
periodi~ni operacii 

1. INTRODUCTION 

Nonlinear frequency response is a quasi-
stationary response of a nonlinear system to a pe-
riodic (sinusoidal or cosinusoidal) input, around a 

steady-state. One of the most convenient tools for 
treating nonlinear frequency responses is the con-
cept of higher order frequency response functions 
[1], which is based on Volterra series and general-
ized Fourier transform. This concept is very con-
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venient for analyzing weakly nonlinear systems. 
The basics for its application lay in the facts that [1]: 

– Frequency response (FR) of a nonlinear 
system contains, in addition to the first (basic) 
harmonic, a DC component and an indefinite num-
ber of higher harmonics (Fig. 1, equation (1)): 
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Fig. 1. Schematic representation of frequency response 
 of a weakly nonlinear system 

– A model of a weakly nonlinear system can 
be replaced by an indefinite sequence of linear 
models of different orders. In the frequency 
domain these linear models are defined as 
frequency response functions (FRFs) of different 
orders (G1(ω), G2(ω1,ω2), G3(ω1,ω2,ω3) in Fig. 1), 
which are directly related to different harmonics of 
the FR: the first order FRF G1(ω) corresponds to 
the most significant term of the first harmonic: 
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the second order FRFs G2(ω,ω) and G2(ω,–ω) 
correspond to the most significant terms of the 
second harmonic and the DC component: 
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and so on.  
Accordingly, the FRFs of different orders can 

be estimated from different harmonics of the FR. 

Being weakly nonlinear, adsorption systems 
are good candidates for investigation based on this 
concept. Up until now, our investigations of ad-
sorption systems by nonlinear FR have been or-
ganized into two main directions:  

– Development of experimental techniques 
for investigation of adsorption equilibrium and 
kinetics [2]. 

– Development of a computational technique 
for fast approximate estimation of periodic steady 
states of cyclic adsorption processes [3]. 

2. NONLINEAR FR METHODS FOR 
INVESTIGATION OF ADSORPTION 

EQUILIBRIUM AND KINETICS  

Adsorption systems generally involve a 
number of interacting phenomena and processes, 
with different complex, and often not well known, 
kinetic mechanisms. For their proper design, the 
knowledge of both equilibrium and kinetics is 
essential. 

Application of the nonlinear FR for investi-
gation of adsorption equilibrium kinetics and 
dynamics is based on the following facts which 
make it potentially advantageous over other 
methods: – Nonlinear FR results in a set of FRFs, 
which contain different information. In a number 
of cases, the second and higher order FRFs corre-
sponding to different kinetic mechanisms differ in 
shape, which enables reliable discrimination be-
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tween different kinetic mechanisms and identifica-
tion of the correct one. 

– The obtained set of FRFs can be used for 
estimation of both kinetic and equilibrium parame-
ters of the identified model, including those defin-
ing the system nonlinearity. 

The nonlinear FR analysis can be performed 
using different experimental arrangements. In our 
investigations we have developed several tech-
niques, based on the following arrangements: 

– An ideally mixed adsorber with a periodic 
change of the reservoir volume or inlet flow-rate; 

– A chromatographic column with a periodic 
change of the inlet concentration; 

– A zero-length column (ZLC) with a peri-
odic change of the inlet concentration; 

– A two-reservoir system divided by a mem-
brane, with a periodic change introduced to one of 
the reservoirs. 

Some of these techniques have been devel-
oped only theoretically, while others have also 
been tested experimentally. 

For the sake of simplicity, in this manuscript 
we will limit our analysis only to isothermal cases, 
although nonlinear FRFs of some nonlisothermal 
cases have also been derived and analyzed [4].  

2.1. Particle FRFs 

The usual way of using the FR technique for 
investigation of adsorption kinetics is to analyze 
the response of the adsorber. Nevertheless, the fi-
nal aim of the FR investigation is to reveal the ki-
netic mechanism and to obtain the equilibrium and 
kinetic parameters of the adsorption process. In 
practice, this aim is reduced to identification of the 
best mathematical model on the particle level. Ac-
cordingly, we recognize the particle as a subsys-
tem of the adsorber (Figure 2) and we define two 
sets of FRFs, one representing the model on the 
adsorber scale (in this manuscript denoted as 
G1(ω), G2(ω1,ω2), G3(ω1,ω2,ω3)…), and the other 
on the particle scale (denoted as F1(ω), F2(ω1,ω2), 
F3(ω1,ω2,ω3)…) [5]. The particle FRFs depend 
only on the kinetic mechanism, while the adsorber 
ones depend on the adsorber type as well. 

For isothermal cases, the mathematical model 
of the particle relates the adsorbate concentration 
in the particle Q (the particle output) to the con-
centration in the fluid phase C surrounding the 
particle (the particle input).  

 

Fig. 2. Schematic representation of an adsorber–adsorber 
and particle inputs and outputs 

1) Experimental FR measurements by modu-
lating a chosen adsorber input periodically around 
a chosen steady-state. 

2) Harmonic analysis of the adsorber output 
signals.  

3) Estimation of the adsorber FRFs, based on 
experiments performed with 2 or 3 input ampli-
tudes.  

4) Calculation of the particle FRFs from the 
adsorber ones, based on the adsorber model.  

5) Identification of the kinetic model by com-
paring the shapes of the estimated particle FRFs 
with theoretically derived FRFs corresponding to 
different kinetic mechanisms. 

6) Estimation of the equilibrium and kinetic 
parameters of the identified model.  

2.1.1. Model discrimination  

A very important step of the described proce-
dure is identification of the correct kinetic model. 
It is based on model discrimination which is per-
formed by comparing the shapes of the particle 
FRFs obtained from experimental data with theo-
retically derived FRFs corresponding to different 
models, i.e. kinetic mechanisms. It has been shown 
that the second order particle FRFs offer enough 
information for model discrimination [6, 7, 8]. 
Here are some characteristic examples of model 
discrimination based on the second order particle 
FRFs.  
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Example 1: Discrimination between isothermal 
micropore and pore-surface diffusion mechanisms 

In a number of cases, the overall rate of the 
adsorption process is governed by a Fickian diffu-
sion process, either on the micro-particle level (by 
micropore diffusion), or on the macro-particle 
level (by pore-surface diffusion mechanism).  

Investigations by linear FR resulted in identi-
cal shapes of the FR-characteristic curves for the 
micropore and pore-surface diffusion mechanisms. 
Nevertheless, the second order FRFs correspond-
ing to the two mechanisms have different shapes, 
as illustrated in Fig. 3, in which the FRFs for mi-
cropore diffusion are shown as lines, and the FRFs 
for pore-surface diffusion as lines with symbols. 
The FRFs presented in Fig. 3 correspond to mod-
els with constant diffusion coefficients, plane ge-
ometry, and favourable adsorption isotherm. Stan-
dard Bode plot representation is used (amplitudes 
vs. frequency are plotted in log-log, and phases vs. 
frequency in semi-log diagrams). 

 
Fig. 3. First and second order FRFs for micropore  

and pore-surface diffusion mechanisms 

Example 2: Discrimination among three models 
used to describe bimodal characteristic curves 

A very characteristic example of the inability 
of the classical linear frequency response method 
to identify the correct kinetic mechanism is ad-
sorption of some substances (e.g. p-xylene, 2-
butane, propane or n-hexane) on silicalite-1.  

The linear FR resulted in bimodal FR charac-
teristic functions [9], such as those shown in Fig. 
4. These characteristic functions fitted equally 
well to three different kinetic models: two inde-

pendent isothermal diffusion processes (Model 1), 
an isothermal diffusion-rearrangement process 
(Model 2) and a nonisothermal micropore diffu-
sion process (Model 3) [9].  

 
Fig. 4. An example of bimodal characteristic curves 

Our analysis, based on the nonlinear FR and 
the higher order FRFs corresponding to those three 
models, showed that the second order FRFs can be 
used for discrimination among these three mecha-
nisms. The asymmetrical second order FRFs 
F2(ω,–ω), corresponding to the three models, are 
shown in Fig. 5. The obvious differences in their 
shape give enough information for identification of 
the correct model. 

 
Fig. 5. Amplitude functions of F2(ω,–ω) for models 1, 2 and 3 

Example 3: Isothermal adsorption on bidispersed 
sorbents – models of different complexity 

In a number of cases, the adsorbent material 
is produced in the form of granules or pellets, 
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composed of a large number of microparticles. 
Complex kinetic mechanisms are characteristic for 
these so-called bidispersed adsorbents. In such 
systems, diffusion on both macro-particle (pellet) 
and micro-particle scale usually influences the 
overall adsorption rate. Often, the adsorption/de-
sorption rate at the micropore mouth and/or the 
film mass transfer at the macro-particle surface 
also have to be taken into account. In case of sig-
nificant heat effects, the heat generation and trans-
fer have to be taken into account, as well. 

Depending on the kinetic parameters in a par-
ticular system, the overall rate of the adsorption 
process can be defined by a single mechanism, or 
by combination of two, three or all four mecha-
nisms. A detailed analysis of this problem is given 
in [10]. 

An overview of the characteristic behaviour 
of the first and second order FRFs for mechanisms 
of different complexity is given in Table 1. The 
meaning of the letters describing the mechanisms 
is as follows: M – micropore diffusion, P – pore 
diffusion, L – Langmuir kinetics, and F – film re-
sistance. The results presented in Table 1 show 
that the mechanism can be identified from the sec-
ond order FRFs, i.e. from their high-frequency as-
ymptotic behaviour. The limiting values shown in 
Table 1 correspond to the case of a favourable iso-
therm. For unfavourable isotherms, the phases of 
F2(ω,ω) and F2(ω,−ω) are shifted by +π, in com-
parison to the ones given in Table 1.  

T a b l e  1  

Summary of the high-frequency behaviour of the 
first and second order FRFs for isothermal kinetic 

mechanisms of different complexity 

*The meaning of the letters describing the mechanisms is as 
follows: M – micropore diffusion, P – pore diffusion, L – Langmuir 
kinetics and F – film resistance. 

2.1.2. Estimation of model parameters 

Once the correct model of adsorption has 
been identified, the FRFs determined from experi-
mental FR data can be used for estimation of the 
model parameters. In principle, both the equi-
librium and kinetic parameters can be estimated 
from the FRFs. 

Estimation of equilibrium parameters  

For analysis in the frequency domain it is 
most convenient to represent the adsorption iso-
therm in the Taylor series form: 

 L+++=Φ= 32 ~~~)( cccbcacq  (5) 

where c and q are nondimensional concentrations 
in the fluid and solid phase, respectively, defined 
as relative deviations from their steady-state values 
Cs and Qs, and the Taylor series coefficients 

K,~,~,~ cba  are proportional to the nondimensional 
derivatives of the adsorption isotherm around the 
investigated steady-state. These coefficients are 
directly related to the low-frequency asymptotes of 
the particle FRFs, in the following way: 

– For isothermal adsorption in nonporous par-
ticles:  
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– For isothermal adsorption in porous parti-
cles of porosity εp: 
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In this way, theoretically any first n deriva-
tives of the adsorption isotherm corresponding to 
the chosen steady-state concentration can be esti-
mated, from the first n FRFs obtained from the 
nonlinear FR experiments. Estimation of these de-

Slope of the amplitude for ω→∞ Phase for ω→∞
Mechanism 

F1(ω) F2(ω,ω) F2(ω,−ω) F1(ω) F(ω,ω)

M –0.5 –0.5 0 −π/4 −5π/4 

P –0.5 –0.5 –0.5 −π/4 −5π/4 

L –1.0 –2.0 –2.0 −π/2 −2π 

F –1.0 –3.0 –2.0 −π/2 −5π/2 

M+P –0.5 –1.0 –0.5 −π/4 −3π/2 

M+P+L –0.5 –2.0 –1.0 −π/4 −2π 

M+P+F –1.0 –2.5 –1.5 −π/2 −9π/4 

M+P+L+F –1.0 –3.5 –2.0 −π/2 −11π/4 
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rivatives for several steady-state concentrations 
usually gives enough information for constructing 
a complete adsorption isotherm [11, 12]. It is im-
portant to note that the sign of the second isotherm 
derivative b~  directly defines the shape of the iso-
therm in that steady-state point (favourable or un-
favourable). Using this fact, inflection points of 
the adsorption isotherm can be easily delineated. 

Estimation of kinetic parameters 

For simple kinetic mechanisms, the kinetic 
parameters can also be estimated readily, from the 
locus of the minimum of the imaginary part of the 
first order FRF F1(ω) [13].  

For an adsorption process governed by a sin-
gle Fickian diffusion process, the time constant is 
defined as the ratio τ = L2/D, where L is the char-
acteristic half dimension and D the diffusion coef-
ficient [13]. Accordingly, the time constants for 
the micropore and pore surface diffusion models 
would be: 
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is the so-called effective, or apparent diffusion 
coefficient, Dμ, Ds and Dp are micropore, surface 
and pore diffusion coefficients, respectively, while 
Rμ and R are the microparticle and particle half-
dimensions. 

The negative imaginary parts of the F1(ω) 
functions, corresponding to a single diffusion me-
chanism and to three different geometries (plane, 
cylindrical and spherical) are shown in Fig. 6.  

The maximums of these curves correspond to 
ωτ = 2.5492, 6.3504 and 11.5630 for plane, cylin-
drical and spherical geometry, respectively. 

Using these results, the time constant of the 
diffusion process is obtained from the locus of the 
maximum of the – Imag(F1(ω)) curve and the 
knowledge of the microparticle or macroparticle 
geometry. The corresponding diffusion coefficient 
is obtained as the ratio of the square of the micro-
particle or macro-particle half-dimension and the 
time constant: D = L2/τ.  

 
Fig. 6. The negative imaginary part of F1(ω) for diffusion 

models 

The FRFs for isothermal micropore and pore-
surface diffusion models, shown in Fig. 3, were 
obtained for constant diffusion coefficients. If this 
assumption is not met, i.e. if concentration de-
pendence of the diffusion coefficient has to be 
taken into account, the value estimated from the 
maximum of the –Imag(F1(ω)) curve is the diffu-
sion coefficient corresponding to the steady-state 
concentration.  

The case of micropore diffusion with variable 
diffusivity has also been investigated [4]. If the 
concentration dependence of the micropore diffu-
sion coefficient is expressed in the Taylor series 
form: 

 L+++=Ξ= 2)2()1(
,)( qDqDDqD s μμμμ  (10) 

the expansion coefficients can also be estimated 
from the higher order FRFs. E.g., it can be shown 
that [4]: 
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For the pore-surface diffusion model, only the 
effective diffusion coefficient can be estimated 
from the first order function, and not the pore and 
surface diffusion coefficients, separately. Never-
theless, the high-frequency asymptotic values of 
the second order FRF F2(ω,− ω):  
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can be used for estimation of separate values of the 
pore and surface diffusion coefficients Dp and Ds. 
This would not be possible by standard (linear) 
methods. 
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For complex kinetic mechanisms, estimation 
of the kinetic parameters becomes much more dif-
ficult and nonlinear least-square methods have to 
be used. 

2.2. Different experimental configurations 

2.2.1. Ideally mixed reservoir-type adsorber 

The FR experiments are usually performed in 
an ideally mixed reservoir-type adsorber contain-
ing solid adsorbent and gaseous adsorbate, in 
which periodic changes of pressure and adsorbed 
quantity are produced by forced periodic modula-
tion of some input variable. The experiments can 
be performed in a batch reservoir with volume 
modulation (Schematically shown in Fig. 7), or in 
a continuous flow reservoir with inlet flow-rate 
modulation [14]. In both cases, the adsorber output 
measured is the pressure in the reservoir. 

 

Fig. 7. Schematic representation of a batch ideally mixed 
reservoir-type adsorber with volume variation 

For both cases, the mathematical model of the 
reservoir-type adsorber with adsorption of a pure 
gas can be defined by the following common equa-
tion: 

 ( ) cn
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The input and output variables, volume v, gas 
concentration c, loading q and inlet molar flow-
rate ni, are defined as nondimensional variations 
around their steady-state values Vs, Cs, Qs and Ns, 
respectively. The concentration in the solid parti-
cle is usually nonuniform, so its average value <q> 
is used in equation (13). 

For a batch adsorber with volume modulation 
γ = 0, while for a flow adsorber with inlet molar 
flow-rate modulation and constant volume, v = 0. 

Based on the appropriate adsorber model, the 
following adsorber vs. particle FRFs relations 
were obtained: 

– For a batch reservoir with volume modula-
tion: 
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– For a flow reservoir with inlet molar flow-
rate modulation: 
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The last result is very important, because as 
its consequence, it is not possible to estimate the 
asymmetrical second order particle FRF F2(ω,−ω) 
from experiments in the flow system. As shown in 
Section 2.1.1., this function can be very useful for 
mechanism discrimination. 

2.2.2. Chromatographic system 

The assumption of perfect mixing in a reser-
voir-type adsorber is usually not acceptable for 
adsorptions from liquid phase. That was a reason 
for developing a method based on nonlinear FR of 
a chromatographic column, for which the fluid 
flow is much better defined. The frequency re-
sponse functions of a chromatographic column 
were defined in such a way to relate the non-
dimensional outlet concentration from the column 
co to the periodic change of the inlet concentration 
ci, for constant flow-rate of the fluid phase [11].  

Chromatographic column  
with single adsorbing component 

The FRFs of a chromatographic column with 
a single adsorbing component were derived start-
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ing from the commonly used dispersion model 
[15], written in its nondimensional form: 
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with the well known Dankwertz boundary condi-
tions: 

 

0:1

,
2
1)(),0(:0

1

0

=
∂
∂

=

∂
∂

+==

=

=

x

x
i

x
cx

x
c

N
ccx ττ

 (22) 

Typical Bode plots showing the first, second 
and third order FRFs of a chromatographic column 
are shown in Fig. 8. These FRFs relate the changes 
of the nondimensional outlet and inlet concentrati-
ons, defined as relative deviations from their 
steady-state values. The functions shown in Fig 8 
correspond to a favourable isotherm and local 
equilibrium between the phases in each point of 
the column. 

Contrary to the cases of the reservoir-type ad-
sorbers, estimation of the particle FRFs from those 
in the column is not easy. As an illustration, we 
give the expression for the first order FRF: 
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Fig. 8. First, second and third order FRFs  
of a chromatographic column 

In equation (23) λ1 and  λ2 are solutions of 
the corresponding characteristic equation which 
are related to the particle first order FRF F1(ω), in 
the following way: 
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It is obvious that calculating F1(ω) from 
G1(ω) would be quite difficult. This complexity 
increases profoundly for higher order FRFs.  

Nevertheless, the analysis has shown that the 
equilibrium parameters can be estimated directly 
from the column FRFs. The following useful re-
sults were obtained for the low-frequency behav-
iour of the first three column FRFs [11]: 
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Equations (25–27) can be used for estimation 
of the equilibrium parameters K,~,~,~ cba  (equa-
tion (5)) from the low-frequency asymptotes of the 
FRFs of a chromatographic column. The numerical 
values of the equilibrium parameters are obtained 
from the amplitudes and their signs from the 
phases of the corresponding FRFs. It is important 
to remind that the sign of the second coefficient of 
the Taylor series expansion of the isotherm ( b~ ) 
determines the shape of the isotherm in the inves-
tigated steady-state.  

Recently, this analysis has been extended to 
binary adsorption systems [16]. It was shown that 
coefficients of competitive adsorption isotherms 
can be estimated from the low-frequency asymp-
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totes of the FRFs corresponding to the concentra-
tions of both components in the outlet stream from 
the column. The following Taylor series form of 
competitive adsorption isotherm expressions was 
used in this analysis: 

2,1,~~~~

~~~~~

2
2142
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22

3
11

213
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112211

=⋅⋅⋅+++++

+++++=

icccccccccc

ccbcbcbcacaq

iiii

iiiiii
 

  (28) 

Experimental verification of the method 

So far, experimental validation of the pro-
posed nonlinear FR methods has been performed 
only for estimation of single adsorption isotherms 
from nonlinear FR of a chromatographic column. 
The experimental investigation is performed using 
a standard gradient high performance liquid chro-
matography (HPLC) unit, with an additional 3-way 
valve and a bypass line. Schematic representation 
of the used experimental system is given in Fig. 9 
The HPLC unit possesses a multi-solvent delivery 
system, auto sampler with a syringe, thermostated 
column compartment, UV detector and computer 
data acquisition station. In order to enable the 
same pressure during the whole experiment with 
periodic change of the inlet concentration, a by-
pass line (long narrow tube) is used. The nonlinear 
FR method requires measurements of both the inlet 
and outlet concentration changes during the ex-
periments. This is achieved by switching the 3-way 
valve in such a way that it changes the direction of 
the fluid stream leaving the pump section: through 
the bypass line and than to the detector, for meas-
uring the input concentration change, or through 
the column and than to the detector, for measuring 
the output concentration change.  

An important issue of practical application of 
equations (25–27) is to determine the needed fre-
quency range in which asymptotic behaviour of the 
column FRFs can be assumed. (Using higher fre-
quencies introduces errors in the estimated equilib-
rium parameters, while using very low frequencies 
results in very long experiments and large con-
sumption of chemicals.) A straightforward proce-
dure has been developed for proper choice of the 
input modulation frequency [17]. An important con-
clusion of this analysis is that it is recommended to 
work with short columns and high flow-rates [17]. 

The nonlinear FR method was used for esti-
mation of adsorption isotherms of 4-tert-butyl-

phenol and ethyl benzoate, as single solutes, on 
octadecyl silica, with a mixture of methanol and 
water (60 : 40, v/v) as solvent. The compounds are 
chosen based on the fact that these systems exhibit 
significantly different equilibrium behaviour (ad-
sorption of 4-tert-butylphenol can be described by 
a simple Langmuir isotherm, while adsorption of 
ethyl benzoate follows the BET isotherm with an 
inflection point) [18]. 

 

Fig. 9. Schematic representation of the experimental setup  
for estimation of adsorption isotherms by nonlinear FR  

of a chromatographic column 

The experiments with 4-tert-butylphenol were 
performed for two steady-state concentrations: 1 
and 5 g/dm3, while the experiments with ethyl 
benzoate were performed for 3 steady-state con-
centrations: 5, 10 and 13 g/dm3. For each steady-
state point the first three isotherm derivatives were 
estimated, as explained previously. These data 
were then used to determine the parameters of the 
corresponding adsorption isotherms. The results 
are shown in Figure 10. The isotherms obtained 
using the nonlinear FR method are shown in paral-
lel with the isotherms obtained by the frontal 
analysis method, which is used as a standard refer-
ence method [15]. The agreement is very good.  



10 M. Petkovska 

Maced., J. Chem. Chem. Eng., 28 (1), 1–16 (2009) 

a) 

b) 
Fig. 10. Experimental adsorption isotherms  

for 4-tert-butylphenol (left) and ethyl benzoate (right)  
on octadecyl silica, obtained by nonlinear FR method  

and frontal analysis 

2.2.3. ZLC system 

The NFR-ZLC method is based on the ZLC 
apparatus in which the inlet concentration is mo-
dulated in a sinusoidal way around a chosen steady-
state value. The system is shown schematically in 
Fig. 11. Owing to a very shallow adsorption bed 
used, the concentration of the effluent stream is 
considered equal to the concentration within the 
bed. This resolves the problem of estimating the 
particle FRFs from the column ones, which is pre-
sent when a standard chromatographic column is 
used, as explained in Section 2.2.2.  

The mathematical model of the system shown 
in Fig. 11, for the case of isothermal conditions 
and constant flow rate, is given by the following 
material balance equation: 

  )(),( cFqcc
dt

qd
dt
dc

in =−=
><

+ γβ  (29) 

 
Fig. 11. Schematic picture of the NFR-ZLC system 

In Eq. (29) the concentrations in the fluid c, 
and in the particle q, as well as the inlet con-
centration cin, are again defined as nondimensional 
deviations from their steady-state values and: 

 
s

s
C

Q
V
V

ε
εβ

ε
γ )1(, −

==
&

 (30) 

(V is the volume of the ZLC bed, ε its porosity and 
V& the volumetric flow-rate). 

Equation (29) is practically identical to the 
material balance equation corresponding to the 
continuous-flow reservoir-type adsorber (equation 
(13) with v = 0). Accordingly, the ZLC vs. particle 
FRFs relations are the same as equations (18) to (20). 

2.2.4. Two-reservoir membrane system 

This method is based on investigation of mass 
transfer through a membrane which separates two 
chambers (reservoirs) with different partial pres-
sures of the permeating component. An example of 
such system is shown in Figure 12, where the pres-
sures in both chambers p1 and p2 are changing pe-
riodically, owing to periodic modulation of the 
volume of reservoir 1 (V1). The analysis of the 
mass transfer through the membrane is based on the 
measurements of both pressures. This method is de-
veloped for investigation of permeation of pure gases 
for different nonlinear mass transfer mechanisms.  

 
Fig. 12. Potential experimental setup for investigation  

of membrane systems by nonlinear FR 
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Generalized membrane permeability 

Classical definition of membrane permeabil-
ity, based on the following definition of trans-
membrane flux: 

 
L

ppPJ 21 −
=  (31) 

is essentially valid only for stationary permeation 
and linear processes. (p1 and p2 are the pressures at 
two sides of the membrane, L the membrane thick-
ness, J the transmembrane flux and P the perme-
ability.)  

Application of the nonlinear FR analysis to 
transmembrane transport led us to a new, general-
ized concept of membrane permeability, which can 
be applied to non-stationary permeation and 
nonlinear systems. The permeability is defined as a 
sequence of values (permeabilities of the first, 
second, third, … order, PI, PII, PIII,…), defined by 
the following equation [19]: 
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 (32) 

where <J> is the mean value of the flux through 
the membrane in non-stationary conditions and Δp1 
and Δp2 the changes of the pressures at the left- 
and right-hand side of the membrane. 

The permeabilities PI, PII, PIII,… are func-
tions of the equilibrium and kinetic parameters of 
the membrane, which depend on the membrane 
transport mechanism. The expressions for PI and 
PII, corresponding to two common mechanisms of 
isothermal membrane transport: solution-diffusion 
and pore-surface diffusion, are given in Table 2.  

T a b l e  2  

The permeabilities of the first and second order, 
for solution-diffusion and pore-surface diffusion 

mechanisms 

Mechanism PI PII 
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The model equations for these two mecha-
nisms are practically identical to the model equa-
tions for micropore and pore-surface diffusion 
mechanisms of adsorption. In the analysis of 
membrane transport, the concentration dependence 
of the micropore and surface diffusion coefficients 
were taken into account, using expressions analo-
gous to equation (10). 

Definition of the FRFs  

Several sets of FRFs can be defined for this 
system. The most informative is the one correlat-
ing the changes of the pressures in Reservoirs 2 
and 1 (Δp2 and Δp1). 

The shapes of the first and second order func-
tions (denoted as Z1 and Z2) are presented in Fig. 
13 for the solution-diffusion model and in Fig. 14 
for the pore-surface diffusion model. 

 

Fig 13. First and second order FRFs for solution-diffusion 
model 

 

Fig 14. First and second order FRFs for pore-surface diffusion 
model 

Inspection of these two figures shows differ-
ences in the shapes of the second order functions 
Z2(ω,ω) corresponding to the two models.  
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Estimation of the first and second order 
permeabilities  

In Fig. 15 we show the imaginary parts of the 
first order functions Z1(ω) for the solution-
diffusion and pore-surface diffusion models. The 
curves corresponding to the two models overlap. 
This was achieved by using nondimensional fre-
quency on the abscisa, defined as a ratio of the 
dimensional frequency and a characteristic fre-
quency ω*.  

Fig. 15. Imaginary part of Z1(ω) 

The definitions of the characteristic frequencies 
are: 

– For the solution-diffusion mechanism: 

 
s

sps
C
Q
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2
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μω =  (33) 

– For the pore-surface mechanism 
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C
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2
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In (33) and (34) L is the membrane thickness, 
S membrane surface area and V2 volume of the 
constant volume reservoir. 

As it can be seen from Fig. 15, the minimum 
of the function Imag(Z1(ω)) is obtained for ω = ω*. 

By combining the expressions defining ω* in 
(33) and (34) and the definitions of the first order 
permeability PI given in Table 2, the following 
common expression was derived: 

 *2 ω
TSR

LVP
g

I =  (35) 

It should be noted that the characteristic fre-
quency ω* depends not only on the equilibrium 

and transport parameters of the investigated mem-
brane, but also on the geometry of the experimen-
tal system, i.e. on the ratio of the membrane sur-
face area S and the volume of the reservoir V2. 
Consecutively, by choosing the right geometry it 
would be possible to adjust the frequency range of 
interest so that it can be experimentally feasible. 

The second order permeability PII can be es-
timated from the second order Z-functions. The 
simplest way to do that is to use the following ex-
pression:  

 s
I

II p
P
PZ =−

∞→
),(lim 2 ωω

ω
 (36) 

which is valid for both models. With the first order 
permeability PI estimated from the first order FRF 
Z1(ω), equation (36) enables direct estimation of 
the second order permeability PII corresponding to 
the steady-state pressure ps. 

Based on the estimated first and second order 
permeability, it is possible to determine the basic 
equilibrium and kinetic parameters of the corre-
sponding transmembrane mass transport mecha-
nism.  

Recently we started nonlinear FR analysis of 
mass transport through porous membranes for bi-
nary mixtures of inert and adsorbable components 
[20].  

3. COMPUTATIONAL TECHNIQUE  
FOR FAST ESTIMATION OF PERIODIC 

STEADY-STATES 

Industrial adsorption processes are usually 
performed in fixed-beds, which need to be oper-
ated in a cyclic way, with adsorption and desorp-
tion (regeneration) steps. A number of different 
cyclic adsorption processes have been developed 
in the last 30 years (e.g. TSA, PSA and SMB). 
Computational simulations of these cyclic proc-
esses, which are often used as an aid in their 
analysis and optimization, usually demand long 
and tedious numerical solutions of sets of partial 
differential model equations, with occasional con-
vergence problems.  

Based on Fourier and Volterra series expan-
sions and the concept of higher order frequency 
response functions, we have developed a new 
method for fast approximate calculation of the cy-
clic steady states of periodic processes, which 
avoids long numerical solutions of the model equa-
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tions. The system input is represented in the form of 
Fourier series, while the output is presented in the 
form of Volterra series. For practical applications, 
both the input and the output series are approxi-
mated by finite length sums. On the other hand, the 
nonlinear model is replaced by a finite set of FRFs, 
derived from it. In this way, the approximate peri-
odic quasi-steady state of the system output is cal-
culated directly, using only complex algebra.  

3.1. Basic concept and procedures 

In principle, periodic operation of any proc-
ess is performed by periodic modulation of one or 
more input variables. If the process is nonlinear, 
sets of higher order FRFs need to be defined for its 
proper mathematical description. A block diagram 
of a nonlinear system with two inputs (x and z) and 
one output (y) is presented in Fig. 16. 

As shown in Fig. 16, three sets of FRFs are 
needed to describe such a system: two of them re-
lating the output to each of the inputs and one set 
of cross-functions. 

It is well known that any periodic function 
can be represented as an indefinite sum of simple 
harmonic functions, i.e. in the Fourier series form. 
Accordingly, the input functions x and z can be 
written in the following way: 

 ∑
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while w1 and u1 are the basic frequencies of the 
input changes x and z, respectively. The magni-
tudes of Ak and Bk are the amplitudes and their 
phase angles the phases of the harmonics of the 
corresponding frequencies wk and uk of the inputs x 
and z, respectively.  

For the case of two periodic inputs, the peri-
odic quasi-steady state of the output can be repre-
sented as a sum of three terms, each of them corre-
sponding to the contribution of each set of HFRFs, 
presented in Figure 16: 

 )()()()( τ+τ+τ=τ xzzx yyyy  (39) 

Each of these three terms can be represented 
by an indefinite Volterra series: 
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with the n-th elements of these series defined in 
the following way: 
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Fig. 16. A block diagram of a nonlinear system with two inputs and one output 
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The Volterra series, given by equations (40–
45), with indefinite sums, represent the periodic 
quasi-stationary state of the output exactly. In 
practice, only finite sums can be calculated, result-
ing with equations corresponding to approximate 
solution of the periodic output. For practical appli-
cations the inputs are approximated by finite sums 
of only the first K harmonics, while the output is 
approximated by the sum of only the first N ele-
ments of the Volterra series. 

The quality of the approximate solution obtai-
ned in this way, i.e. its closeness to the exact solu-
tion, increases with the increase of both K and N. 

Based on this analysis, the following proce-
dure for approximate calculation of the quasi-
steady states of periodic processes is defined: 

Step 1: Postulating an appropriate mathema-
tical model for the investigated process.  

Step 2: Deriving the FRFs up to the N-th or-
der, based on the postulated model. 

Step 3: Defining periodic input or inputs and 
their approximation by finite sums, taking into ac-
count only the first K harmonics. 

Step 4: Calculating the approximate output. 
In this procedure, the most complex and time con-
suming step is derivation of the FRFs (step 2). Nev-
ertheless, this step has to be performed only once 
for each investigated system. Once derived, these 
functions can be used for any shapes of the periodic 
input changes and for any set of model parameters. 

Steps 3 and 4, naturally, have to be repeated 
for each particular simulation. Step 3 can be easily 
performed by applying the Fourier transform to the 
periodic input functions, while the last step, calcu-
lation of the periodic output in its quasi-steady 
state, is practically reduced to simple algebra. 

3.2. Example: Cyclic operation of an adsorption 
column 

In order to illustrate the presented procedure 
and our new method, we applied it to simulation of 
cyclic operation of an adsorption column with pe-
riodic modulation of the inlet concentration or/and 
temperature of the entire adsorbent bed [3]. 

Three cases of periodic operation of the ad-
sorption column were analyzed: 

Case 1: Periodic modulation of the inlet con-
centration and constant temperature of the adsorb-
ent bed;Periodic modulation of the temperature of 
the adso\rbent bed and constant inlet concentra-
tion; 

Case 3: Simultaneous periodic modulations 
of the inlet concentration and the temperature of 
the adsorbent bed. 

The cyclic operation of an adsorption column 
was simulated based on the equilibrium-dispersive 
model, with equilibrium relation between the con-
centration in the solid phase q on one, and concen-
tration in the fluid phase c and temperature θ, on 
the other hand, given in the Taylor series form:  
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The model assumes local equilibrium and 
uniform temperature within the column.  

Starting from this model, three series of 
FRFs: Gc – (relating the outlet and inlet concentra-
tion changes), Gθ – (relating the outlet concentration 
and column temperature) and Gcθ – functions (the 
cross-functions) were derived, up to the third or-
der. Typical forms of these functions are shown in 
Figures 17, 18 and 19, respectively, in the form of 
standard Bode plots. 

 

Fig. 17. Typical Gc-functions 

4 
 

Fig. 18. Typical Gθ-functions 
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Fig. 19. Typical Gcθ-functions 

The derived functions were used for direct 
calculation of the outlet concentration for defined 
periodic modulation of the inlet concentration 
or/and column temperature. Two types of modu-
lation functions were considered: sinusoidal and 
rectangular. All calculations were performed in the 
complex domain. 

One set of results is shown in Figure 20. They 
correspond to simultaneous out-of-phase sinusoidal 

modulation of the inlet concentration and column 
temperatures. The results corresponding to two 
modulation frequencies are shown: the lower value 
corresponding to very significant nonlinear effects 
and the higher corresponding to weaker nonlin-
earity. Along with the temporal change of the 
outlet concentration, the Fourier spectra (ampli-
tudes and phases) of the output are also shown, as 
they offer very good insight in the contribution of 
the higher harmonics. For comparison, along with 
the approximate outlet concentration calculated 
based on the first three FRFs, we also provide the 
numerical solution of the model equations, which 
is assumed to be exact. More results, for modula-
tion of only one input and for rectangular input 
changes can be found in Ref. 3.]  

The results presented in Fig. 20 show very 
good agreement between the approximate (based 
on the first three FRFs) and exact (numerical) so-
lution of the adsorption column quasi-steady state 
response. Introducing the fourth and higher order 
FRFs into the approximate solution would further 
improve its quality. 

 

Fig. 20. Outlet concentrations and their Fourier spectra for simultaneous, out-of-phase sinusoidal changes of the inlet concentration 
(25 %) and adsorbent temperature (3.2 %) – Case 3: a) period = 162.5s, b) period = 628s 
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4. CONCLUSIONS 

The purpose of this manuscript is to show the 
potentials of using nonlinear frequency response 
analysis and the concept of higher order frequency 
response functions for investigating adsorption 
systems. The two directions of this application 
shown here have two completely different aims:  

The first one, presented in Section 2, should 
contribute to the development of new methods for 
investigation of adsorption equilibrium and kinet-
ics. The main advantages of using the nonlinear 
FR techniques are that they have good potential 
regarding mechanism discrimination and estima-
tion of both equilibrium and kinetic parameters. 
Different experimental arrangements can be used, 
as shown in Section 2.2, and each of them has its 
advantages and disadvantages. For practical appli-
cation of the presented methods, all these advan-
tages and disadvantages have to be analyzed, to-
gether with some additional aspects, such as defi-
nition of the optimal frequency range of the input 
modulations and the possibility to produce them 
physically, the best choice of input amplitudes and 
so on. Nevertheless, we believe that these methods 
have good potential and bright future.  

The second direction, presented in Section 3, 
gives an easy and elegant method to predict the 
periodic behaviour of different cyclic processes, 
using only analytical mathematical tools and avoid-
ing long and tedious numerical solutions and all the 
convergence problems associated with them. We 
believe that it can be very useful for many re-
searchers and practitioners working on adsorption 
and in the chemical engineering field, in general. 
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