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The Wiener and detour indices of a molecular graph G are defined as the sum of the lengths of all shortest and 
longest paths between the vertices of G. In this paper the exact formulae for the Wiener and detour indices of a new 
type of nanostar dendrimers are given.  
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ВИНЕРОВИ И ПОВРАТНИ ИНДЕКСИ ЗА НОВ ТИП ДЕНДРИМЕРИ ВО ФОРМА НА НАНОЅВЕЗДА 

За молекуларните графови се дефинирани Винерови (Wiener) и повратни индекси кои се дефинирани 
како сума од должините на сите најкуси и најдолги патишта помеѓу пресеците во графот G. Во овој труд се 
изведени формули за Винеровите и повратните индекси за нов тип дендримери во форма на наноѕвезда. 

Kлучни зборови: dendrimer во форма на nanoyвезда; moleкularен graф; Вinerови indeкси, povraten 
indeкс 

INTRODUCTION 

Nanostar dendrimers are part of a new group 
of macromolecules that appear to be photon fun-
nels just like artificial antennas. The topological 
study of these macromolecules is the subject of 
this article.  

Throughout this paper a graph means finite 
simple graph without multiple edges and loops. 
The set of vertices and edges of a graph G are de-
noted by V(G) and E(G), respectively. The dis-
tance dG(u,v) (d(u,v) for short) between two verti-
ces u, v ∈ V(G) of a connected graph G is the 
length of  a shortest path connecting them. Sup-
pose ℑ denotes the set of all finite graphs and ℜ is 
the set of real numbers. A map Top from  ℑ into ℜ 
is called a topological index, if Top(H) = Top(G), 
for all pairs (H,G) of isomorphic graphs. 

The concept of “topological index” was first 
proposed by Hosoya [1] for characterizing the 

topological nature of a graph. Such graph in-
variants are usually related to the distance function 

d(-, -) : V(G) × V(G) ⎯→ R. 
Recently, this part of Mathematical Che-

mistry was named "Metric Graph Theory". The 
first topological index of this type was proposed in 
1947 by the chemist Harold Wiener, [2]. It is de-
fined as the sum of all distances between vertices 
of the graph under consideration. In the last meet-
ing of International Academy of Mathematical 
Chemistry, professor Roberto Todeschini announ-
ced that he and his team improved MOLE db – 
Molecular Descriptors Data Base [3, 4] for work-
ing with more than thousand molecular descrip-
tors. The MOLE db is a free on-line database con-
stituted of 1124 molecular descriptors calculated 
on 234773 molecules that allows the user to search 
for a specific group of molecules and analyze the 
corresponding values of molecular descriptors and 
to save an output file with the values of a block of 
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molecular descriptors calculated on a group of 
molecules.  

Suppose G is a graph with the vertex set V(G) 
= {v1, v2, …, vn}. In Metric Graph Theory, the dis-
tance matrix of G is defined as D(G) = [dij], where 
dij = d(vi,vj). The detour matrix DD = [ddij] can be 
defined for G with entries ddii = 0 and ddij, i ≠ j, as 
the maximum distance between vertices vi and vj. 
The detour matrix was introduced in graph theory 
some time ago by F. Harary [5] for describing the 
connectivity in directed graphs. The detour matrix, 
in contrast to the distance matrix that records the 
length of the shortest path between vertices, records 
the length of the longest distance between each pair 
of vertices. This matrix remained unknown to 
chemists until the publication by Amić and Trinaj-
stić [6]. The detour index was introduced a year 
later by late Istvan Lukovits [7]. Amić and Trinaj-
stić discussed the detour index in their paper, and 
gave it the name of Wiener-like index. The compu-
tation of the detour matrix was presented in a pa-
per by Trinajstić, Nikolić and Mihalić [8] and the 
whole story about the detour matrix, detour index, 
and its uses in chemistry are summarized in [9]. 
We encourage the readers to consult the book of 
Janežič, Miličević, Nikolić and Trinajstić [10] and 
a paper by John [11] and the references therein for 
more information about this topic. 

The problem of computing the topological 
indices of nanostructures was raised by Diudea 
and his co-authors. In some research papers [12−18] 
they computed the Wiener index of nanotubes and 
tori. In [19, 20], the authors presented some meth-
ods for calculation of the Wiener index and reso-
nance energy of benzenoid systems which are ex-
tendable to nanomaterials. In recent years, some 
authors worked on computing the Wiener, PI, 
Schultz and Szeged indices of the chemical graphs 
of some nanomaterials, [21−30].  

This paper addresses the problem of computing 
the Wiener and detour indices of an infinite class 
of nanostar dendrimers. We choose these two 
topological indices because of their correlations 
with some physico-chemical properties of mole-
cules. Our notation is standard and taken mainly 
from the standard books of graph theory.  

RESULT AND DISCUSSION 

Throughout this paper G[n] denotes the mo-
lecular graph of a nanostar dendrimer with exactly 

n generation (Figs 1−2). We first calculate the 
Wiener and detour matrices of the graph G[n] and 
then compute the Wiener and detour indices of 
these nanostars. At first, we introduce two con-
cepts which are important in our calculations. 
Suppose G and H are graphs such that V(H) ⊆ 
V(G) and E(H)  ⊆ E(G). Then we call H to be a 
subgraph of G. H is called isometric, if for each x, 
y ∈ V(H), dH(x, y) = dG(x, y). 

In Figure 3, four isometric subgraphs of G[n] 
are depicted. From this figure, it is clear that G[n] 
is constructed from the subgraphs isomorphic to B 
and the core (Fig. 2). To compute the Wiener and 
detour indices of G[n], we calculate matrices WA1, 
WA2, WA3 and WB which are the Wiener matrices 
of the subgraphs A1, A2, A3 and B, respectively. 
Suppose Di and Di' are 8 × 8 and 8 × 60 matrices in 
which each entry is equal to i and M is the Wiener 
matrix of the core.    

  
Fig. 1. The molecular graph  

of G[1] 
Fig. 2. The core  

of G[n] 

To construct the Wiener matrix of G[n], it is 
enough to calculate the distance matrix between a 
subgraph isomorphic to B and core, distance ma-
trix between two subgraphs isomorphic to B (see 
A2 and A3 in Fig. 3) and the Wiener matrix of the 
core. The distance matrix between a subgraph 
isomorphic to B and core is equal to the sum of the 
Wiener matrix of the subgraph A1, WA1, and the 
matrix Di', where i = l(P) − 1 such that P is a 
minimum path connecting a vertex of core to a 
vertex of B and l(P) denotes the length of P. We 
now calculate the distance matrix between two 
subgraphs isomorphic to B. To do this, we assume 
that B1 and B2 are two subgraphs isomorphic to B 
and P is a minimum path connecting a vertex of B1 
to a vertex of B2. Obviously, there are two separate 
cases that one of the end vertices of P is a vertex 
of a hexagon of G[n] or two end vertices of P are 
not belong to a hexagon. In the first case, the dis-
tance matrix D(B1,B2) between B1 and B2 is equal 
to WA3 + Di and for the second D(B1,B2) = WA2 + 
Di. From Fig. 1, one can see that to partition the 
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molecular graph of G[n] into a core together with 
four isomorphic subgraphs M1[n], …, M4[n]. We 
name each of M1[n], …, M4[n], to be a branch of G 
and M[n] = M1[n] ∪ …∪ M4[n].. Obviously, each 
of branches Mi[n], 1 ≤ i ≤ 4, has exactly two iso-
morphic components ][1 nMi  and ][2 nMi . More-
over, the core and branches constitute a partition 
for G[n]. Every subgraph Mi[n], 1 ≤ i ≤ 4, has ex-
actly 2n+1–2 subgraphs isomorphic to B such that 
degree of vertices of their hexagons are 2 in G, say 

i
kY1 , 1 ≤ i ≤ 2n–1, l = 1,2 and k = 1, 2, 3, 4. We now 

define s1, …, s8 as follows: 
• s1 is the summation of distances between 

vertices of iY11  jY21  and iY12  as well as iY13 , 
jY23  and iY14 , jY24 , for each of i and j, 1 ≤ i 

≠ j ≤ 2n–1, 
• s2 is the summation of distances between 

vertices of jY23 , iY13 , and iY11 , jY21 ; jY23 , 
iY13  and iY12 , jY22 ; iY14 , jY24 , and iY11 , jY21 ; 
iY14 , jY24 , and iY12 , jY22  for each of i and j, 

1 ≤ i ≠ j ≤ 2n–1, 
• s3 is the summation of distances between 

vertices of i
kY1  and j

kY2 , for each of i, j 
and k, 1 ≤ i ≠ j ≤ 2n–1 and k = 1,2,3,4, 

• s4 is the summation of distances between 
the vertices of ][1 nMi  and ]1[2 −nMi , 

• s5 is the summation of distances between 
vertices of i

kY1  and j
kY2  in ]1[ −nMk , 

• s6 is the summation of distances between 
vertices of iY13 , jY23 , from ]1[1 −nM  and 

iY14 , jY24 , from M2[n – 1], 

• s7 is the summation of distances between 
vertices of M2[n] and M1[1], as well as 
M3[n] and M4[1], 

• s8 is the summation of distances between 
other vertices of ][1 nMi  and 2

iM [1]. 

 

 
 
 

 

A1 A2 

  
A3 B 
Fig. 3. Some subgraphs of G[n] 

In Table 1, the Wiener matrix of G[1] is 
computed. By definition of s1, …, s8, one can 
prove the following equalities: 

T a b l e  1  
The Wiener Matrix of G[1]. 

 C B1 B2 B3 B4 B5 B6 B7 B8 

C M A1 A1 A1 A1 A1 A1 A1 A1 

B1 A1 B A2+D13 A2+D13 A2+D28 A2+D28 A2+D28 A2+D28 A2+D3 

B2 A1 A2+D3 B A2+D13 A2+D13 A2+D28 A2+D28 A2+D28 A2+D28 

B3 A1 A2+D28 A2+D28 B A2+D28 A2+D28 A2+D13 A2+D13 A2+D3 

B4 A1 A2+D28 A2+D28 A2+D3 B A2+D28 A2+D28 A2+D13 A2+D13 

B5 A1 A2+D28 A2+D28 A2+D13 A2+D13 B A2+D3 A2+D28 A2+D28 

B6 A1 A2+D28 A2+D28 A2+D13 A2+D3 A2+D13 B A2+D28 A2+D28 

B7 A1 A2+D13 A2+D13 A2+D28 A2+D28 A2+D28 A2+D28 B A2+D3 

B8 A1 A2+D13
 A2+D3 A2+D28

 A2+D28
 A2+D28

 A2+D28
 A2+D13

 B 
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By a simple calculation with Maple, one can see that 

.202.2244.1442.1644.320... 821 −⋅−−+⋅=+++ nnsss nnnn  
Therefore we prove the following theorem, 

Theorem 1: The Wiener index of G = G[n] is computed as follows: 

5022.90484.204804.40962.44802.55424)( 3 ++⋅++⋅+−= +nnnnn nnGW  

Proof. By definition of A1, A2, A3, B, M, Di and Di' and above calculations, we have: 
n n ' n 3

i, j1 2 8 ij 1

n n n n n
2 3

n 3

n n n n n n

W(G) 64(s s ... s ) ( 80.2 40.2 .n 80) d W(A )(2 8)

W(A )( 8.2 .n 32.4 52.2 20) W(A )( 16.2 8.2 .n 16)

W(B)(2 8) W(M)
64(320.4 .n 164.2 144.4 224.2 .n 20) 480( 80.2 40.2 .n 80)
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+

+

+
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To compute the detour index of G[n], we de-
fine the quantities t1, …, t8 similar to s1, …, s8 by 
changing distance into longest distance. Define t1, 
…, t8 as follows: 

• t1 is the summation of maximum distances 
between vertices of i

11Y ,  j
21Y  and i

12Y ,  
j

22Y ,  as well as i
13Y ,  j

23Y  and i
14Y ,  

j
24Y , for each of i and j, 1 ≤ i ≠ j ≤ 2n-1, 

• t2 is the summation of maximum distances 
between vertices of j

23Y ,  i
13Y  and i

11Y ,  
j

21Y  ; j
23Y ,  i

13Y  and i
12Y ,  j

22Y  ; i
14Y ,  j

24Y  

and i
11Y ,  j

21Y  ; i
14Y ,  j

24Y  and i
12Y ,  

j
22Y , for each of i and j, 1 ≤ i ≠ j ≤ 2n–1, 

• t3 is the summation of maximum distances 
between vertices of i

1kY  and j
2kY , for each 

of i, j and k, 1 ≤ i ≠ j ≤ 2n–1 and k = 1,2,3,4, 
• t4 is the summation of maximum distances 

between the vertices of 1
iM [n]  and 

2
iM [n 1]− , 

• t5 is the summation of maximum distances be-
tween vertices of i

1kY  and j
2kY  in Mk[n – 1], 
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• t6 is the summation of maximum distances 
between vertices of i

13Y ,  j
23Y  from M1[n – 

1] and i
14Y ,  j

24Y  from M2[n – 1], 
• t7 is the summation of maximum distances 

between vertices of M2[n] and M1[1], as 
well as M3[n] and M4[1], 

• t8 is the summation of maximum distances 
between other vertices of 1

iM [1] and 
2
iM [1] . 

By a similar method as the one above, it can 
be seen that the following equations are satisfied: 
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A simple calculation by Maple shows that  

.762.3204.2402.3164.448... 821 −⋅−−+⋅=+++ nnttt nnnn  

Therefore we have the following theorem: 
Theorem 2: The detour index of G = G[n] is computed as follows: 

.6302.124524.286724.40962.62722.74624)( 3 ++⋅++⋅+−= +nnnnn nnGdd  

Proof. By definition of A1, A2, A3, B, M, Di and Di' and above calculations, we have: 
n n n n n n

n 3 n n n n n
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CONCLUSION 

In this paper a novel method for computing 
the Wiener and detour matrices of chemical graphs 
are presented. If a molecular graph G can be de-
composed into cycles and paths then a similar 
method as given in the paper can be applied to 
compute the Wiener and detour matrices of G. So, 
the method given in this paper is general for such 
molecular graphs.  
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