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The Wiener and detour indices of a molecular graph G are defined as the sum of the lengths of all shortest and
longest paths between the vertices of G. In this paper the exact formulae for the Wiener and detour indices of a new

type of nanostar dendrimers are given.
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BUHEPOBU U IIOBPATHH UHJEKCH 3A HOB THII JEHAPUMEPHU BO ®OPMA HA HAHOSBE3JIA

3a monekynapuute rpadoBu ce aepunupanu BunepoBu (Wiener) u HOBpaTHH HHICKCH KOU C€ JAe(HUHUPAHH
KaKo CyMa Ol JOJDKHHHUTE Ha CHTE HajKyCH M HajJoJITH MaTuiiTa nomery mnpeceuure Bo rpadot G. Bo oBoj Tpyx ce
u3BeieHn (HopMyiH 3a BuHepoBUTE M NOBPATHUTE MHAEKCHU 32 HOB THII JCHIPUMEPH BO ()OpMa HA HAHOSBE3/1A.

Kuyunn 360opoBu: feHpuMep Bo GopMa Ha HAaHOSBe3/1a; MoJIeKylapes rpad; Buneposu nuHjexcu, noBpaTeH

HWHJIEKC

INTRODUCTION

Nanostar dendrimers are part of a new group
of macromolecules that appear to be photon fun-
nels just like artificial antennas. The topological
study of these macromolecules is the subject of
this article.

Throughout this paper a graph means finite
simple graph without multiple edges and loops.
The set of vertices and edges of a graph G are de-
noted by V(G) and E(G), respectively. The dis-
tance dg(u,v) (d(u,v) for short) between two verti-
ces U, V € V(G) of a connected graph G is the
length of a shortest path connecting them. Sup-
pose J denotes the set of all finite graphs and R is
the set of real numbers. A map Top from 3 into R
is called a topological index, if Top(H) = Top(G),
for all pairs (H,G) of isomorphic graphs.

The concept of “topological index” was first
proposed by Hosoya [1] for characterizing the

topological nature of a graph. Such graph in-
variants are usually related to the distance function
d(-,-) : V(G) x V(G)—> R

Recently, this part of Mathematical Che-
mistry was named "Metric Graph Theory". The
first topological index of this type was proposed in
1947 by the chemist Harold Wiener, [2]. It is de-
fined as the sum of all distances between vertices
of the graph under consideration. In the last meet-
ing of International Academy of Mathematical
Chemistry, professor Roberto Todeschini announ-
ced that he and his team improved MOLE db —
Molecular Descriptors Data Base [3, 4] for work-
ing with more than thousand molecular descrip-
tors. The MOLE db is a free on-line database con-
stituted of 1124 molecular descriptors calculated
on 234773 molecules that allows the user to search
for a specific group of molecules and analyze the
corresponding values of molecular descriptors and
to save an output file with the values of a block of
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molecular descriptors calculated on a group of
molecules.

Suppose G is a graph with the vertex set V(G)
= {V1, Vs, ..., Vn}. In Metric Graph Theory, the dis-
tance matrix of G is defined as D(G) = [d;], where
dj = d(v;,vj). The detour matrix DD = [dd;] can be
defined for G with entries dd; = 0 and ddij, | #j, as
the maximum distance between vertices Vi and V.
The detour matrix was introduced in graph theory
some time ago by F. Harary [5] for describing the
connectivity in directed graphs. The detour matrix,
in contrast to the distance matrix that records the
length of the shortest path between vertices, records
the length of the longest distance between each pair
of vertices. This matrix remained unknown to
chemists until the publication by Ami¢ and Trinaj-
sti¢ [6]. The detour index was introduced a year
later by late Istvan Lukovits [7]. Ami¢ and Trinaj-
sti¢ discussed the detour index in their paper, and
gave it the name of Wiener-like index. The compu-
tation of the detour matrix was presented in a pa-
per by Trinajsti¢, Nikoli¢ and Mihali¢ [8] and the
whole story about the detour matrix, detour index,
and its uses in chemistry are summarized in [9].
We encourage the readers to consult the book of
Janezi¢, Mili¢evié, Nikoli¢ and Trinajsti¢ [10] and
a paper by John [11] and the references therein for
more information about this topic.

The problem of computing the topological
indices of nanostructures was raised by Diudea
and his co-authors. In some research papers [12—18]
they computed the Wiener index of nanotubes and
tori. In [19, 20], the authors presented some meth-
ods for calculation of the Wiener index and reso-
nance energy of benzenoid systems which are ex-
tendable to nanomaterials. In recent years, some
authors worked on computing the Wiener, PI,
Schultz and Szeged indices of the chemical graphs
of some nanomaterials, [21-30].

This paper addresses the problem of computing
the Wiener and detour indices of an infinite class
of nanostar dendrimers. We choose these two
topological indices because of their correlations
with some physico-chemical properties of mole-
cules. Our notation is standard and taken mainly
from the standard books of graph theory.

RESULT AND DISCUSSION

Throughout this paper G[n] denotes the mo-
lecular graph of a nanostar dendrimer with exactly

n generation (Figs 1-2). We first calculate the
Wiener and detour matrices of the graph G[n] and
then compute the Wiener and detour indices of
these nanostars. At first, we introduce two con-
cepts which are important in our calculations.
Suppose G and H are graphs such that V(H) <
V(G) and E(H) < E(G). Then we call H to be a
subgraph of G. H is called isometric, if for each X,
ye V(H)9 dH(Xa y) = dG(Xa y)

In Figure 3, four isometric subgraphs of G[n]
are depicted. From this figure, it is clear that G[n]
is constructed from the subgraphs isomorphic to B
and the core (Fig. 2). To compute the Wiener and
detour indices of G[n], we calculate matrices WA,
WA,, WA; and WB which are the Wiener matrices
of the subgraphs A;, A;, As and B, respectively.
Suppose D; and D' are 8 x 8 and 8 x 60 matrices in
which each entry is equal to i and M is the Wiener
matrix of the core.

Fig. 1. The molecular graph Fig. 2. The core
of G[1] of G[n]

To construct the Wiener matrix of G[n], it is
enough to calculate the distance matrix between a
subgraph isomorphic to B and core, distance ma-
trix between two subgraphs isomorphic to B (see
A, and A; in Fig. 3) and the Wiener matrix of the
core. The distance matrix between a subgraph
isomorphic to B and core is equal to the sum of the
Wiener matrix of the subgraph A;, WA,, and the
matrix Dy, where i = 1(P) — 1 such that P is a
minimum path connecting a vertex of core to a
vertex of B and I(P) denotes the length of P. We
now calculate the distance matrix between two
subgraphs isomorphic to B. To do this, we assume
that B, and B, are two subgraphs isomorphic to B
and P is a minimum path connecting a vertex of B,
to a vertex of B,. Obviously, there are two separate
cases that one of the end vertices of P is a vertex
of a hexagon of G[n] or two end vertices of P are
not belong to a hexagon. In the first case, the dis-
tance matrix D(B;,B,) between B, and B, is equal
to WA; + D; and for the second D(B,,B,) = WA, +
Di. From Fig. 1, one can see that to partition the
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molecular graph of G[n] into a core together with
four isomorphic subgraphs M;[n], ..., My[n]. We
name each of M;[n], ..., My[n], to be a branch of G
and M[n] = M{[n] U ...u My[n].. Obviously, each
of branches M;[n], 1 <i < 4, has exactly two iso-
morphic components Mil[n] and Miz[n]. More-
over, the core and branches constitute a partition
for G[n]. Every subgraph M;[n], 1 <i <4, has ex-
actly 2"'-2 subgraphs isomorphic to B such that
degree of vertices of their hexagons are 2 in G, say

Y, 1<i<2" 1=12andk=1,2,3,4. We now
define s, ..., & as follows:
e S, is the summation of distances between
vertices of Ylil Yzj1 and Yliz as well as Y1i3,
Yzj3 and Y1i4 , Yzj4 , for each of i and j, 1 <i
#j<2™
e S is the summation of distances between
vertices of Y2j3, Y1i3, and Ylil, Yzjl; Y2j3,
Yy and Y5, Y5 Yy, Y, and W), Y
Y1i4 , Y2j4 , and Yliz , Y2j2 for each of i and J,
1<izj<2™
e S is the summation of distances between
vertices of Ylik and Yzjk, for each of i, |
andk 1 <i=j<2"andk=12734,
e 5, is the summation of distances between
the vertices of Mil[n] and Miz[n—l],
e S5 is the summation of distances between

vertices of Ylik and Yzjk in My[n-1],

S 1s the summation of distances between
vertices of Y3, Y2]3, from M;[n-1] and
Yi4, Yy, from My[n—1],

S; is the summation of distances between
vertices of M,[n] and M;[1], as well as
M;[n] and My[1],

S is the summation of distances between
other vertices of Mil[n] and Miz [1].

A; B
Fig. 3. Some subgraphs of G[n]

In Table 1, the Wiener matrix of G[1] is
computed. By definition of s,

..., &, one can

prove the following equalities:

Table 1
The Wiener Matrix of G[1] .

C B, B, B, B, B, B, B, Bs
C M A A A A A A A A
B, Ay B AptDy3 AytDy; AytDog AytDyg AytDog AytDog AytDs
B, A AytDs B AytDy3 AytDy3 AgtDag AytDog AytDog AgtDag
B; A AytDog AgtDag B AytDog AgtDag AytDy3 AytDy3 AytD;
By A AytDog AgtDag AytDs B AgtDag AytDog AytDy3 AytDy3
Bs A AytDog AgtDag AytDy3 AytDy3 B AytDs AytDog AgtDag
Bs A AytDog AgtDag AytDy3 AytDs AytDy3 B AytDog AgtDag
B, A AytDy3 AytDy3 AytDog AytDog AgtDag AytDog B AytD;
Bg A AytDy3 AytD; AytDog AytDog AgtDag AytDog AytDy3 B
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Do 8 . 80 8
s, =327 (10i+3)=—— 4"+ — 4" n+—
=3 oien=-Sar s DS
6= 3272 (101 +18) = 104 4n 160 4oy 704
i=1 9 3 9
5,25 34277101~ 7) =2 g0 4 68,2 122488 4o
=izt 3 9 9
n -k
=L 2 3214~ (k) == 24+ A =562 +156.2°n-202°m* 12
1=3k=2 i=1
n j-1 . .
6= 352 (5004 )= 7) =136.2" —40.2"n — F8 4 80 g 736
j=2i=1 9 3 9
n j-1 . .
S6 = Z J221+J+3_(5_(i + J) —+ 18) — ﬂ'4n 4 @'411.1,l _ 256'2[] _ 160_2n.n + 1856
j=21i=1 9 3 —9
573 i 496 . 160 512

n j-1
s, =3 5321 (5)= 3 522 (5(i + §) + 3) = Sy A A 1120 802"

=3 i=l j=2i=1

n I-11-k . n j-2 .
=33 3 3.2M (5(141)— (5k+2)= 33 272 (5i) = 160.2" —100.2".n + 20.2".n> — 160

1=3k=2 i=1 j=3 i=l
By a simple calculation with Maple, one can see that

S +S) +..+ 5 =3204"-n+164.2" —144.4" —224.2" .n-20.
Therefore we prove the following theorem,

Theorem 1: The Wiener index of G = G[n] is computed as follows:
W(G) =-55424.2" +4480.2" - n+4096.4" +20480.4" - n+9048.2™3 + 502

Proof. By definition of A;, Ay, A;, B, M, D; and D;' and above calculations, we have:

W(G) =64(s, +s, +...+8, ) +(—80.2" +40.2".n +80) X, ; d'ij +W(A)(2"" -8)
+W(A,)(-8.2"n+32.4" —52.2" +20)+ W(A,)(-16.2" +8.2"n +16) +
+W(B)(2""” —8)+ W(M)
= 64(320.4"n+164.2" —144.4" —224.2"n—20)+480(—80.2" +40.2".n + 80)
+64(2"° —8)+416(—8.2".n+32.4" —52.2" +20) +368(—16.2" +8.2".n +16)
+8984(2" —8)+21558
=—55424.2" +502 +4480.2".n +4096.4" +20480.4" n +9048.2"*, 0

To compute the detour index of G[n], we de- and Ylil’
fine the quantities ty, ..., tg similar to S, ..., & by

j . . . . n-1
changing distance into longest distance. Define t, Y;,, foreachofiandj, 1 <i=j<2",

b i J i
Yy 5 Y, Yy and Y,

..., tg as follows:
e t; is the summation of maximum distances
between vertices of Y/, Y; and Y),,

Y),, as well as Y}, YJ, and Y/,

220
j . . . . n-1
Y,,, foreach ofiandj, 1 <i=#j<2™,
e 1, is the summation of maximum distances

between vertices of Y,,, Y/; and Y|,
i, j i i i i j
Y5 5 Yy, Yz and Yy, Y5, 5 Yy, Y5,

t; is the summation of maximum distances
between vertices of Y, and Y}, , for each
ofi,jandk 1<i#j<2"'andk=12,34,
t, is the summation of maximum distances
between the vertices of Mil[n] and
M[n-1],

{5 is the summation of maximum distances be-
tween vertices of Y;, and Y;, in Mn— 1],
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e tsis the summation of maximum distances e tgis the summation of maximum distances
between vertices of Y/, Y), from M;[n— between other vertices of MI[1] and
1] and Y1i4, Yzj4 from M,[n— 1], Mlz[l]

e t;is the summation of maximum distances By a similar method as the one above, it can
between vertices of M,[n] and M/[1], as be seen that the following equations are satisfied:
well as M;[n] and My[1],

B — 21’1+3 _ 8
Al — 2n+3 _ 8

A, =-82"n+20+32.4"-52.2"
A, =-162"+8.2"n+16
D! =-112.2"+56.2"n+112

£, =3 2% (14i+5) = 2.4" +%.4".n—§

i=1 9
=322 (14i4+22) = 532 4o 224 4o, 832
i=1 9 3 9
=3 3427 (14i-9) =112 g pop 664 g 164
j=1i=1 3 9 9
n I-11-k .
ty=> > > 2" (7(1+i)—(7Tk +2)) = _1336 93 6 4 +%.4“.n 722" £212.2"n-282"n + 1254
1=3 k=2 i=1
n j-1 . .
=S5 2 (74 )—9)=184.2" ~56.2n — 20 gn (112 gy 992
j=2 =l 9 3 9
n j-1 . .
te= 2 5 2.0+ ) +22) = %.4“ +?.4“.n 256,27 224270+ 004
j=2i=1
L B
L= S5 9=t - B A 41442 11227000
j=2i=I

n j-2 .
ts = zjz 212 (7i) =224.2" —140.2"n +28.2"n* — 224

=3 i=1

A simple calculation by Maple shows that

t +ty +..+tg =448.4" .n+316.2" —240.4" -320.2" -n-76.

Therefore we have the following theorem:
Theorem 2: The detour index of G = G[n] is computed as follows:

dd(G)=-74624.2" +6272.2" -n+ 4096.4" + 28672.4" - n+12452.2™3 + 630.

Proof. By definition of A;, A,, A3, B, M, D; and D' and above calculations, we have:
dd(G) =64(448.4"n—-76+316.2" —240.4" —320.2".n) +480(-112.2" +56.2".n +112)
+124(2™° —8) +608(~8.2"n+20+32.4" —52.2")+592(~16.2" +8.2"n +16)
+12328(2""7 —8)+29718
= —74624.2" + 630+ 6272.2"n +4096.4" +28672.4" n +12452.2""
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CONCLUSION

In this paper a novel method for computing
the Wiener and detour matrices of chemical graphs
are presented. If a molecular graph G can be de-
composed into cycles and paths then a similar
method as given in the paper can be applied to
compute the Wiener and detour matrices of G. So,
the method given in this paper is general for such
molecular graphs.
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