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The topological resonance energy (TRE) of a catacondensed benzenoid hydrocarbon with h six-membered 
rings and K Kekulé structures can be calculated by the (approximate) formula TRE = Ah + B + CK e–Dh, where A = 
0.136, B = –0.223, C = 0.281, and D = 0.454. Thus, within classes of benzenoid isomers, TRE is an increasing linear 
function of K. The greater is h, the smaller the effect of the number of Kekulé structures on TRE. 
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INTRODUCTION 

Resonance energy is a standard concept in the 
theoretical chemistry of conjugated molecules [1–
4]. After the publication of the seminal work by 
Dewar and de Llano [5], a large number of differ-
enTREsonance energies were put forward in the 
chemical literature, and their properties examined 
in detail [6–19]. Most of this work was done in the 
1970s [6–19], and (with a few noteworthy excep-
tions [20–24]) research along these lines 
significantly attenuated in the 1980s and the later 
years. Recently the interest towards resonance en-
ergy has again increased, as seen from the review 
articles [25–28] and some mosTREcent papers 
[29–32]. 

In this paper we report results obtained within 
our studies [30–32] of the structure–dependence of 
resonance energy. Of the several (mutually related) 
variants of resonance energy, we examined here 
the so-called “topological resonance energy”, TRE. 
This resonance energy was put forward independ-
ently by Gutman, Milun and Trinajsti� [14, 17] 
and Aihara [16, 18]. Its numerous chemical appli-
cations are described elsewhere [4, 16–18, 33–36]. 
We have decided to investigate TRE (and not some 
other resonance energy) because, in contrast to the 
similar resonance energies proposed by Dewar and 
de Llano [5, 7], Balaban [6], Hess and Schaad [8, 
9], Milun et al. [10], Herndon et al. [11, 12], Wil-
cox [13], Randi� [15, 19], and Jiang et al. [20], 
TRE is defined without introducing any new ad-
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justable parameters. Note that because the TRE-
value of acyclic conjugated systems is exactly 
zero, the TRE measures the energy–effect of the �-
electron conjugation along all cycles present in the 
considered molecule. 

TRE is defined as the difference between total 
�-electron energy (E) and a suitably constructed 
reference energy (Eref

 
): 

 TRE = E – Eref.  (1) 

In Eq. (1) E is the total �-electron energy, 
computed by means of the HMO approximation, 
and expressed in the units of the carbon–carbon 
resonance energy �; for details on E see the recen-
TRE view [37] and the references quoted therein. 
If gi is the occupation number of the i-th �-electron 
molecular orbital, then 

 �=
=

n

i
ii xgE

1
 (2) 

where xi, i =1, 2,...,n, are the eigenvalues of the 
molecular graph representing the �-electron system 
under consideration [3, 4], labelled so that 

 x1 � x2 � ··· � xn. 

The quantity Eref is defined in full analogy 
with Eq. (2), as: 

 �=
=

n

i
ii

ref ygE
1

 

where yi, i = 1, 2,..., n, are the zeros of the match-
ing polynomial of the molecular graph, and 

 y1 � y2 � ··· � yn. 

Details on the matching polynomial can be 
found in the books [4, 38] and elsewhere [16, 17]. 

From the very beginning [16, 17] it was rec-
ognized that in the case of polycyclic conjugated 
hydrocarbons, molecular size (or more precisely: 
the number of carbon atoms and carbon–carbon 
bonds) is the main factor influencing the numerical 
value of TRE. Therefore, in order to eliminate the 
(large) size-dependent effects, and make the 
(smaller) effects of other structural details visible, 
it is necessary to restrict the examination of TRE to 
isomers, possibly to sets consisting of large num-
ber of isomers. In the 1970s and 1980s, when such 
studies were actual, the power of available com-
puting machines did not permit the calculation of 

TRE-values for a large number of large conjugated 
molecules. Later, when sufficiently powerful com-
puters became available, the interest of scholars 
was shifted to other topics. Thus, it happened that 
until quite recently [32] it was not noticed that 
within sets of isomeric benzenoid hydrocarbons, 
the main factor determining TRE is the number K 
of Kekulé structures, and that the form of the rela-
tion between TRE and K is the simplest possible – 
linear: 

 TRE � a K + b.  (3) 

An example illustrating Eq. (3) is given in 
Fig. 1. 

 
Fig. 1. Topological resonance energy (TRE) of a set consisting 

of 36 (= all possible) isomeric hexacyclic catacondensed 
benzenoid hydrocarbons C26H16 vs. the respective Kekulé 

structure count (K) 

In this paper we report the results of a more 
detailed examination of Eq. (3), which revealed 
that the coefficients a and b depend on the number 
h of hexagons, so that b is a linear function of h, 
whereas a is an exponentially decreasing function 
of h. Our main finding is that the TRE-value of a h-
cyclic catacondensed benzenoid hydrocarbon with 
K Kekulé structures is well reproduced by the for-
mula 

 TRE � A h + B + C Ke−Dh  (4) 

where A = 0.136 ± 0.001, B = −0.223 ± 0.006, 
C = 0.281 ± 0.005, and D = 0.454 ± 0.003. 

NUMERICAL WORK 

Our investigations of Eq. (3) were performed 
on sets of isomeric catacondensed benzenoid hy-
drocarbons containing h six-membered rings, for 
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h = 3, 4, 5, 6, 7, 8. For a given value of h, each 
catacondensed benzenoid species has 4h + 2 car-
bon–atoms, 5h + 1 carbon–carbon bonds, and its 
formula is C4h+2H2h+4. 

The sets with h � 7 consisted of all possible 
isomers, whereas the set for h = 8 contained only 
25% of the possible number of isomers; for details 
see Table 1. The benzenoid isomers were taken 
from the book [39]; in the case h = 8, of the 441 
possible isomers, each fourth (in the order given in 
[39]) has been selected. 

Table 1 shows the values of the coefficients a 
and b in Eq. (3), for the six sets of isomers consid-
ered. 

T a b l e  1  

The coefficients a and b in Eq. (3), obtained by 
least-squares fitting, for sets of catacondensed 

benzenoid hydrocarbons with h six-membered rings 

h # a b R SD 

3 2 0.0710 0.191 1.000 0.0000 

4 5 0.0460 0.322 0.994 0.0028 

5 12 0.0293 0.456 0.998 0.0041 

6 36 0.0187 0.592 0.996 0.0064 

7 118 0.0117 0.732 0.993 0.0081 

8 103 0.0074 0.873 0.994 0.0082 

# = number of isomers in the respective set; R = correlation 
coefficient; SD = standard deviation 

 

The dependence of the logarithm of the coefficient 
a on h is almost perfectly linear (see Fig. 2). Also 
linear is the dependence of the coefficient b on h 
(see Fig. 3). 

 
Fig. 2. Dependence of the coefficient a in Eq. (3)  

on the number of six-membered rings h;  
for details see Table 1 and Eq. (5) 

 

Fig. 3. Dependence of the coefficient b in Eq. (3)  
on the number of six-membered rings h; for details see Table 1 

and Eq. (6) 

The respective regression lines are: 

 ln a = (−0.453 ± 0.003) h − (1.270 ± 0.017)  (5) 

 b = (0.136 ± 0.001) h − (0.223 ± 0.006)  (6) 

with correlation coefficients 0.99992 and 0.99989, 
respectively. Substituting the right-hand sides of 
Eqs. (5) and (6) back into (3), we arrive at formula 
(4). 

DISCUSSION 

By means of formula (4), the TRE-values of 
catacondensed benzenoid hydrocarbons can be 
computed with an error of less than 1%. (The av-
erage relative error for h = 4, 5, 6, 7, 8 is 0.41%, 
0.41%, 0.57%, 0.59%, and 0.59%, respectively.) 
Such an accuracy is sufficient for all usual applica-
tions of the topological resonance energy. 

Formula (3) shows that the number K of Ke-
kulé structures is the main parameter determining 
the differences between the TRE-values of benze-
noid isomers. Moreover, TRE is an increasing lin-
ear function of K. On the other hand, the effect of 
Kekulé structures exponentially decreases with the 
increasing size of the benzenoid systems. 

Long time ago Hall [40, 41] studied the K-
dependence of total �-electron energy of benze-
noid molecules and obtained an approximate for-
mula of the form fully analogous to Eq. (4): 

 E = A* h + B* + C* K e−D* h (7) 

with A* = 5.708 , B* = 1.672 , C* = 0.538 , and 
D* = 0.459. 
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Note that the numerical values of the con-
stants D and D*, occurring in the exponents of 
Eqs. (3) and (7) are practically equal. This detail 
leads to the conclusion that, within classes of iso-
meric benzenoid molecules, there must exist a 
good linear correlation between TRE and E. That 
this indeed is the case is illustrated in Fig. 4. 

The linear correlation between TRE and E 
implies that (at least in the case of benzenoid sys-
tems) TRE and E depend on molecular structure in 
an analogous manner and that both can be used for 
reaching the same chemical inferences (about the 
degree of aromaticity and similar). Because the 
total �-electron energy can be calculated much eas-
ier than the topological resonance energy, from a 
practical point of view preference should be given 
to the former. 

 
Fig. 4. Correlation between topological resonance energy 

(TRE) and total �-electron energy (E) in the case of 
catacondensed benzenoid hydrocarbons with h = 8 six 

membered rings; correlation coefficient = 0.998 

To the authors’ best knowledge, correlations 
of the kind shown in Fig. 4 are reported here for 
the first time. ITREmains a remarkable and diffi-
cult-to-understand fact that such correlations seem 
to have not been noticed already in the early days 
of the theory of topological resonance energy, e. g. 
in the papers [16–18]. 

REFERENCES 

 [1] A. Streitwieser, Molecular Orbital Theory for Organic 
Chemists, Wiley, New York, 1961. 

 [2] M. J. S. Dewar, The Molecular Orbital Theory of Organic 
Chemistry, McGraw-Hill, New York, 1969. 

 [3] A. Graovac, I. Gutman, N. Trinajsti�, Topological Ap-
proach to the Chemistry of Conjugated Molecules, 
Springer-Verlag, Berlin, 1977. 

 [4] N. Trinajsti�, Chemical Graph Theory, CRC Press, Boca 
Raton, 1983; 2nd ed.: 1992. 

 [5] M. J. S. Dewar, C. de Llano, Ground states of conjugated 
molecules. XI. Improved treatment of hydrocarbons, J. 
Am. Chem. Soc., 91, 789–795 (1969). 

 [6] A. T. Balaban, Chemical graphs X. (Aromaticity VIII). 
Resonance energies of cata-condensed benzenoid poly-
cyclic hydrocarbons, Rev. Roum. Chim., 15, 1243–1250, 
(1970). 

 [7] N. C. Baird, Dewar resonance energy, J. Chem. Educ., 48, 
509–514 (1971). 

 [8] B. A. Hess, L. J. Schaad, Hückel molecular orbital � reso-
nance energies. A new approach, J. Am. Chem. Soc., 93, 
305–310 (1971). 

 [9] B. A. Hess, L. J. Schaad, Hückel molecular orbital � reso-
nance energies. The benzenoid hydrocarbons, J. Am. 
Chem. Soc., 93, 2413–2416 (1971). 

[10] M. Milun, Z. Sobotka, N. Trinajsti�, Hückel molecular 
orbital calculations of the index of aromatic stabilization 
of polycyclic conjugated molecules, J. Org. Chem., 37, 
139–141 (1972). 

[11] W. C. Herndon, M. L. Ellzey, Resonance theory. V. 
Resonance energies of benzenoid and nonbenzenoid � 
systems, J. Am. Chem. Soc., 96, 6631–6642 (1974). 

[12] R. Swinborne-Sheldrake, W. C. Herndon, I. Gutman, 
Kekulé structures and resonance energies of benzenoid 
hydrocarbons, Tetrahedron Lett., 755–758 (1975). 

[13] C. F. Wilcox, Topological definition of resonance energy, 
Croat. Chem. Acta, 47, 87–94 (1975). 

[14] I. Gutman, M. Milun, N. Trinajsti�, Topological defini-
tion of delocalisation energy, MATCH Commun. Math. 
Comput. Chem., 1, 171–175 (1975). 

[15] M. Randi�, Conjugated circuits and resonance energies of 
benzenoid hydrocarbons, Chem. Phys. Lett., 38, 68–70 
(1976). 

[16] J. Aihara, A new definition of Dewar-type resonance 
energies, J. Am. Chem. Soc., 98, 2750–2758 (1976). 

[17] I. Gutman, M. Milun, N. Trinajsti�, Graph theory and 
molecular orbitals. 19. Nonparametric resonance energies 
of arbitrary conjugated systems, J. Am. Chem. Soc., 99, 
1692–1704 (1977). 

[18] J. Aihara, Resonance energies of benzenoid hydrocar-
bons, J. Am. Chem. Soc., 99, 2048–2053 (1977). 

[19] M. Randi�, A graph theoretical approach to conjugation 
and resonance energies of hydrocarbons, Tetrahedron, 
33, 1905–1920 (1977). 

[20] Y. Jiang, A. Tang, R. Hoffmann, Evaluation of moments 
and their application to Hückel molecular orbital theory, 
Theor. Chim. Acta, 65, 255–265 (1984). 

[21] J. Cioslowski, Nodal increments approach to the topo-
logical resonance energy of benzenoid hydrocarbons, 
MATCH Commun. Math. Comput. Chem. 19, 163–170 
(1986). 

[22] D. Babi�, A. Graovac, I. Gutman, On a resonance energy 
model based on expansion in terms of acyclic moments: 
Exact results, Theor. Chim. Acta, 79, 403–411 (1991). 

[23] D. Babi�, N. Trinajsti�, Resonance energy of conjugated 
hydrocarbons derived by cluster expansion, Croat. Chem. 
Acta, 65, 881–892 (1992). 



 A simple formula for calculating resonance energy of benzenoid hydrocarbons 21 

�������	
���	��������	������	#$�	"�	"#$%"	�%&&'�	

[24] F. Zhang, H. Zhang, Y. Liu, The Clar covering polyno-
mial of hexagonal systems. II. An application to reso-
nance energy of condensed aromatic hydrocarbons, Chin. 
J. Chem., 14, 321–325 (1996). 

[25] L. J. Schaad, B. A. Hess, Dewar resonance energy, Chem. 
Rev., 101, 1465–1476 (2001). 

[26] S. W. Slayden, J. F. Liebman, The energetics of aromatic 
hydrocarbons: An experimental thermochemical perspec-
tive, Chem. Rev., 101, 1541–1566 (2001). 

[27] M. Randi�, Aromaticity of polycyclic conjugated hydro-
carbons, Chem. Rev., 103, 3449–3606 (2003). 

[28] M. K. Cyra�ski, Energetic aspects of cyclic �-electron 
delocalization: Evaluation of the methods of estimating 
aromatic stabilization energies, Chem. Rev., 105, 3773–
3811 (2005). 

[29] I. Lukovits, Resonance energy in graphite, J. Chem. Inf. 
Comput. Sci. 44, 1565–1570 (2004). 

[30] I. Gutman, S. Gojak, B. Furtula, Clar theory and reso-
nance energy, Chem. Phys. Lett., 413, 396–399 (2005). 

[31] I. Gutman, S. Gojak, S. Stankovi�, B. Furtula, A con-
cealed difference between the structure-dependence of 
Dewar and topological resonance energy, J. Mol. Struct. 
(Theochem), 757, 119–123 (2005). 

[32] I. Gutman, S. Gojak, B. Furtula, S. Radenkovi�, A. Vo-
dopivec, Relating total �-electron energy and resonance 
energy of benzenoid molecules with Kekulé- and Clar-
structure-based parameters, Monatsh. Chem. (in press). 

[33] P. Ili�, B. Sinkovi�, N. Trinajsti�, Topological resonance 
energies of conjugated structures, Israel J. Chem., 20, 
258–269 (1980). 

[34] P. Ili�, N. Trinajsti�, Topological resonance energies of 
conjugated ions, radicals and ion radicals, J. Org. Chem., 
45, 1738–1748 (1980). 

[35] J. Aihara, Topological resonance energies of fullerenes 
and their molecular ions, J. Mol. Struct. (Theochem), 311, 
1–8 (1994). 

[36] D. Babi�, O. Ori, Matching polynomial and topological 
resonance energy of C70, Chem. Phys. Lett., 234, 240–244 
(1995). 

[37] I. Gutman, Topology and stability of conjugated hydro-
carbons. The dependence of total �-electron energy on 
molecular topology, J. Serb. Chem. Soc., 70, 441–456 
(2005). 

[38] I. Gutman, O. E. Polansky, Mathematical Concepts, in: 
Organic Chemistry, Springer-Verlag, Berlin, 1986. 

[39] J. V. Knop, W. R. Müller, K. Szymanski, N. Trinajsti�, 
Computer Generation of Certain Classes of Molecules, 
SKTH, Zagreb, 1985. 

[40] G. G. Hall, A graphical model of a class of molecules, 
Int. J. Math. Educ. Sci. Technol., 4, 233–240 (1973). 

[41] G. G. Hall, Eigenvalues of molecular graphs, Publ. Inst. 
Math. Appl., 17, 70–72 (1981). 

 


