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The topological resonance energy (TRE) of a catacondensed benzenoid hydrocarbon with /4 six-membered
rings and K Kekulé structures can be calculated by the (approximate) formula TRE = Ah + B + CK ¢ ™", where A =
0.136, B =-0.223, C = 0.281, and D = 0.454. Thus, within classes of benzenoid isomers, TRE is an increasing linear
function of K. The greater is &, the smaller the effect of the number of Kekulé structures on TRE.
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EQJHOCTABHA ®OPMYIJIA 3A IPECMETYBAIE HA EHEPTTJATA HA PESOHAHIIMJA
HA BEH3EHOUJHUTE JATTEBOJOPOIN

TononomkaTa eHeprija Ha pe3oHaHIja (TRE) Ha KaTaKOHAECH3UpaH OCH3EHOW/IEH jarJIeBO0POA €O h
mecrowieHu npcrenu u K crpykrypu Ha Kekyné Moxe fja ce mpecMeTa co IIOMOII Ha (aIpOKCHMAaTHBHATA)
cdopmyna TRE = Ah + B + CKe™™" | kage mrro: A = 0,136, B = —0,223, C = 0,281 u D = 0,454 . Toa 3Haun geka
BO KiacaTa Ha OeH3eHompgHMTE M3oMepn TRE e pacreuka nmHeapHa (yHkumja on K. Konky e moronem h
TOJIKY IOMAJIO € BlujaHueTo Ha 6pojoT Ha Kekynéosure crpykrypu Bp3 TRE.

Kny4unu 360poBn: GeH3eHONTHN jarIeBOAOPOH; €HEPrija HAa pe30HAHIINja; TOMOJIOIIKAa eHePrija
Ha pe3oHaHnuja; Kexynéosu cTpykTypu

INTRODUCTION

Resonance energy is a standard concept in the
theoretical chemistry of conjugated molecules [1-
4]. After the publication of the seminal work by
Dewar and de Llano [5], a large number of differ-
enTREsonance energies were put forward in the
chemical literature, and their properties examined
in detail [6-19]. Most of this work was done in the
1970s [6-19], and (with a few noteworthy excep-
tions [20-24]) research along these lines
significantly attenuated in the 1980s and the later
years. Recently the interest towards resonance en-
ergy has again increased, as seen from the review
articles [25-28] and some mosTREcent papers
[29-32].

In this paper we report results obtained within
our studies [30-32] of the structure—dependence of
resonance energy. Of the several (mutually related)
variants of resonance energy, we examined here
the so-called “topological resonance energy”, TRE.
This resonance energy was put forward independ-
ently by Gutman, Milun and Trinajsti¢ [14, 17]
and Aihara [16, 18]. Its numerous chemical appli-
cations are described elsewhere [4, 1618, 33-36].
We have decided to investigate TRE (and not some
other resonance energy) because, in contrast to the
similar resonance energies proposed by Dewar and
de Llano [5, 7], Balaban [6], Hess and Schaad [8,
9], Milun et al. [10], Herndon et al. [11, 12], Wil-
cox [13], Randi¢ [15, 19], and Jiang et al. [20],
TRE is defined without introducing any new ad-
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justable parameters. Note that because the TRE-
value of acyclic conjugated systems is exactly
zero, the TRE measures the energy—effect of the -
electron conjugation along all cycles present in the
considered molecule.

TRE is defined as the difference between total
m-electron energy (E) and a suitably constructed
reference energy (E'):

TRE=E-E™. (D)

In Eq. (1) E is the total z-electron energy,
computed by means of the HMO approximation,
and expressed in the units of the carbon—carbon
resonance energy f; for details on E see the recen-
TRE view [37] and the references quoted therein.
If g; is the occupation number of the i-th z-electron
molecular orbital, then

E=3 g @)
=1

1=

where x;, i =1, 2,...,n, are the eigenvalues of the
molecular graph representing the z-electron system
under consideration [3, 4], labelled so that

X| Z Xy 2 o 2 X,

The quantity E' is defined in full analogy
with Eq. (2), as:

n
EY =Ygy
i=1

where y;, i = 1, 2,..., n, are the zeros of the match-
ing polynomial of the molecular graph, and

MiZY2Z 2,

Details on the matching polynomial can be
found in the books [4, 38] and elsewhere [16, 17].

From the very beginning [16, 17] it was rec-
ognized that in the case of polycyclic conjugated
hydrocarbons, molecular size (or more precisely:
the number of carbon atoms and carbon—carbon
bonds) is the main factor influencing the numerical
value of TRE. Therefore, in order to eliminate the
(large) size-dependent effects, and make the
(smaller) effects of other structural details visible,
it is necessary to restrict the examination of 7RE to
isomers, possibly to sets consisting of large num-
ber of isomers. In the 1970s and 1980s, when such
studies were actual, the power of available com-
puting machines did not permit the calculation of

TRE-values for a large number of large conjugated
molecules. Later, when sufficiently powerful com-
puters became available, the interest of scholars
was shifted to other topics. Thus, it happened that
until quite recently [32] it was not noticed that
within sets of isomeric benzenoid hydrocarbons,
the main factor determining 7RE is the number K
of Kekulé structures, and that the form of the rela-
tion between TRE and K is the simplest possible —
linear:

TRE=aK+b. 3)

An example illustrating Eq. (3) is given in
Fig. 1.
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Fig. 1. Topological resonance energy (TRE) of a set consisting
of 36 (= all possible) isomeric hexacyclic catacondensed
benzenoid hydrocarbons CycH vs. the respective Kekulé
structure count (K)

In this paper we report the results of a more
detailed examination of Eq. (3), which revealed
that the coefficients a and b depend on the number
h of hexagons, so that b is a linear function of £,
whereas a is an exponentially decreasing function
of h. Our main finding is that the TRE-value of a -
cyclic catacondensed benzenoid hydrocarbon with
K Kekulé structures is well reproduced by the for-
mula

TRE<Ah+B+CKe™" 4)

where A = 0.136 + 0.001, B = —-0.223 + 0.006,
C=0.281 £ 0.005, and D = 0.454 + 0.003.

NUMERICAL WORK
Our investigations of Eq. (3) were performed

on sets of isomeric catacondensed benzenoid hy-
drocarbons containing 4 six-membered rings, for
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h=3,4,5,6,7, 8. For a given value of h, each
catacondensed benzenoid species has 4h + 2 car-
bon—atoms, 5k + 1 carbon—carbon bonds, and its
formula is C4h+2H2h+4.

The sets with & < 7 consisted of all possible
isomers, whereas the set for 42 = 8 contained only
25% of the possible number of isomers; for details
see Table 1. The benzenoid isomers were taken
from the book [39]; in the case h = 8, of the 441
possible isomers, each fourth (in the order given in
[39]) has been selected.

Table 1 shows the values of the coefficients a
and b in Eq. (3), for the six sets of isomers consid-
ered.

Table 1

The coefficients a and b in Eq. (3), obtained by
least-squares fitting, for sets of catacondensed
benzenoid hydrocarbons with h six-membered rings

# a b R SD
2 0.0710 0.191 1.000 0.0000
5 0.0460 0.322 0.994 0.0028

12 0.0293 0.456 0.998 0.0041
36 0.0187 0.592 0.996 0.0064
118 0.0117 0.732 0.993 0.0081
103 0.0074 0.873 0.994 0.0082

eI e Y, B N O I I

# = number of isomers in the respective set; R = correlation
coefficient; SD = standard deviation

The dependence of the logarithm of the coefficient
a on h is almost perfectly linear (see Fig. 2). Also
linear is the dependence of the coefficient » on h
(see Fig. 3).
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Fig. 2. Dependence of the coefficient a in Eq. (3)
on the number of six-membered rings /;
for details see Table 1 and Eq. (5)
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Fig. 3. Dependence of the coefficient b in Eq. (3)
on the number of six-membered rings /; for details see Table 1
and Eq. (6)

The respective regression lines are:

Ina=(-0.453 £ 0.003) h — (1.270 £ 0.017) (5)

b=(0.136 £0.001) h — (0.223 £ 0.006)  (6)

with correlation coefficients 0.99992 and 0.99989,
respectively. Substituting the right-hand sides of
Egs. (5) and (6) back into (3), we arrive at formula

4.

DISCUSSION

By means of formula (4), the TRE-values of
catacondensed benzenoid hydrocarbons can be
computed with an error of less than 1%. (The av-
erage relative error for h = 4, 5, 6, 7, 8 is 0.41%,
0.41%, 0.57%, 0.59%, and 0.59%, respectively.)
Such an accuracy is sufficient for all usual applica-
tions of the topological resonance energy.

Formula (3) shows that the number K of Ke-
kulé structures is the main parameter determining
the differences between the TRE-values of benze-
noid isomers. Moreover, TRE is an increasing lin-
ear function of K. On the other hand, the effect of
Kekulé structures exponentially decreases with the
increasing size of the benzenoid systems.

Long time ago Hall [40, 41] studied the K-
dependence of total z-electron energy of benze-
noid molecules and obtained an approximate for-
mula of the form fully analogous to Eq. (4):

E=A*h+B*+C*Ke?" (7)

with A* = 5.708 , B* = 1.672 , C* = 0.538 , and
D* =0.4509.
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Note that the numerical values of the con-
stants D and D*, occurring in the exponents of
Eqgs. (3) and (7) are practically equal. This detail
leads to the conclusion that, within classes of iso-
meric benzenoid molecules, there must exist a
good linear correlation between TRE and E. That
this indeed is the case is illustrated in Fig. 4.

The linear correlation between TRE and E
implies that (at least in the case of benzenoid sys-
tems) TRE and E depend on molecular structure in
an analogous manner and that both can be used for
reaching the same chemical inferences (about the
degree of aromaticity and similar). Because the
total 7-electron energy can be calculated much eas-
ier than the topological resonance energy, from a
practical point of view preference should be given
to the former.
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Fig. 4. Correlation between topological resonance energy
(TRE) and total z-electron energy (E) in the case of
catacondensed benzenoid hydrocarbons with & = 8 six
membered rings; correlation coefficient = 0.998

To the authors’ best knowledge, correlations
of the kind shown in Fig. 4 are reported here for
the first time. ITREmains a remarkable and diffi-
cult-to-understand fact that such correlations seem
to have not been noticed already in the early days
of the theory of topological resonance energy, e. g.
in the papers [16—18].

REFERENCES

[1] A. Streitwieser, Molecular Orbital Theory for Organic
Chemists, Wiley, New York, 1961.

[2] M. J. S. Dewar, The Molecular Orbital Theory of Organic
Chemistry, McGraw-Hill, New York, 1969.

[3] A. Graovac, I. Gutman, N. Trinajsti¢, Topological Ap-
proach to the Chemistry of Conjugated Molecules,
Springer-Verlag, Berlin, 1977.

[4] N. Trinajsti¢, Chemical Graph Theory, CRC Press, Boca
Raton, 1983; 2nd ed.: 1992.

[5S1 M. J. S. Dewar, C. de Llano, Ground states of conjugated
molecules. XI. Improved treatment of hydrocarbons, J.
Am. Chem. Soc., 91, 789-795 (1969).

[6] A. T. Balaban, Chemical graphs X. (Aromaticity VIII).
Resonance energies of cata-condensed benzenoid poly-
cyclic hydrocarbons, Rev. Roum. Chim., 15, 1243-1250,
(1970).

[7] N. C. Baird, Dewar resonance energy, J. Chem. Educ., 48,
509-514 (1971).

[8] B. A. Hess, L. J. Schaad, Hiickel molecular orbital & reso-
nance energies. A new approach, J. Am. Chem. Soc., 93,
305-310 (1971).

[9] B. A. Hess, L. J. Schaad, Hiickel molecular orbital 7 reso-
nance energies. The benzenoid hydrocarbons, J. Am.
Chem. Soc., 93, 2413-2416 (1971).

[10] M. Milun, Z. Sobotka, N. Trinajsti¢, Hiickel molecular
orbital calculations of the index of aromatic stabilization
of polycyclic conjugated molecules, J. Org. Chem., 37,
139-141 (1972).

[11] W. C. Herndon, M. L. Ellzey, Resonance theory. V.
Resonance energies of benzenoid and nonbenzenoid w
systems, J. Am. Chem. Soc., 96, 6631-6642 (1974).

[12] R. Swinborne-Sheldrake, W. C. Herndon, I. Gutman,
Kekulé structures and resonance energies of benzenoid
hydrocarbons, Tetrahedron Lett., 755758 (1975).

[13] C. F. Wilcox, Topological definition of resonance energy,
Croat. Chem. Acta, 47, 87-94 (1975).

[14] I. Gutman, M. Milun, N. Trinajsti¢, Topological defini-
tion of delocalisation energy, MATCH Commun. Math.
Comput. Chem., 1, 171-175 (1975).

[15] M. Randi¢, Conjugated circuits and resonance energies of
benzenoid hydrocarbons, Chem. Phys. Lett., 38, 68-70
(1976).

[16] J. Aihara, A new definition of Dewar-type resonance
energies, J. Am. Chem. Soc., 98, 2750-2758 (1976).

[17] 1. Gutman, M. Milun, N. Trinajsti¢, Graph theory and
molecular orbitals. 19. Nonparametric resonance energies
of arbitrary conjugated systems, J. Am. Chem. Soc., 99,
1692-1704 (1977).

[18] J. Aihara, Resonance energies of benzenoid hydrocar-
bons, J. Am. Chem. Soc., 99, 2048-2053 (1977).

[19] M. Randi¢, A graph theoretical approach to conjugation
and resonance energies of hydrocarbons, Tetrahedron,
33, 1905-1920 (1977).

[20] Y. Jiang, A. Tang, R. Hoffmann, Evaluation of moments
and their application to Hiickel molecular orbital theory,
Theor. Chim. Acta, 65, 255-265 (1984).

[21] J. Cioslowski, Nodal increments approach to the topo-
logical resonance energy of benzenoid hydrocarbons,
MATCH Commun. Math. Comput. Chem. 19, 163-170
(1986).

[22] D. Babié, A. Graovac, I. Gutman, On a resonance energy

model based on expansion in terms of acyclic moments:
Exact results, Theor. Chim. Acta, 79, 403-411 (1991).

[23] D. Babi¢, N. Trinajsti¢, Resonance energy of conjugated
hydrocarbons derived by cluster expansion, Croat. Chem.
Acta, 65, 881-892 (1992).

Bull. Chem. Technol. Macedonia, 25, 1, 17-21 (2006)



A simple formula for calculating resonance energy of benzenoid hydrocarbons 21

[24] F. Zhang, H. Zhang, Y. Liu, The Clar covering polyno-
mial of hexagonal systems. II. An application to reso-
nance energy of condensed aromatic hydrocarbons, Chin.
J. Chem., 14, 321-325 (1996).

[25] L. J. Schaad, B. A. Hess, Dewar resonance energy, Chem.
Rev., 101, 1465-1476 (2001).

[26] S. W. Slayden, J. F. Liebman, The energetics of aromatic
hydrocarbons: An experimental thermochemical perspec-
tive, Chem. Rev., 101, 1541-1566 (2001).

[27] M. Randi¢, Aromaticity of polycyclic conjugated hydro-
carbons, Chem. Rev., 103, 3449-3606 (2003).

[28] M. K. Cyranski, Energetic aspects of cyclic m-electron
delocalization: Evaluation of the methods of estimating
aromatic stabilization energies, Chem. Rev., 105, 3773—
3811 (2005).

[29] I. Lukovits, Resonance energy in graphite, J. Chem. Inf.
Comput. Sci. 44, 1565-1570 (2004).

[30] I. Gutman, S. Gojak, B. Furtula, Clar theory and reso-
nance energy, Chem. Phys. Lett., 413, 396-399 (2005).

[31] I. Gutman, S. Gojak, S. Stankovi¢, B. Furtula, A con-
cealed difference between the structure-dependence of
Dewar and topological resonance energy, J. Mol. Struct.
(Theochem), 757, 119-123 (2005).

[32] I. Gutman, S. Gojak, B. Furtula, S. Radenkovi¢, A. Vo-
dopivec, Relating total z-electron energy and resonance
energy of benzenoid molecules with Kekulé- and Clar-
structure-based parameters, Monatsh. Chem. (in press).

Tnac. xem. iwiexnoa. Makeoonuja, 25, 1,17-21 (2006)

[33] P. Ili¢, B. Sinkovié¢, N. Trinajsti¢, Topological resonance
energies of conjugated structures, Israel J. Chem., 20,
258-269 (1980).

[34] P. 1li¢, N. Trinajsti¢, Topological resonance energies of
conjugated ions, radicals and ion radicals, J. Org. Chem.,
45, 1738-1748 (1980).

[35] J. Aihara, Topological resonance energies of fullerenes
and their molecular ions, J. Mol. Struct. (Theochem), 311,
1-8 (1994).

[36] D. Babi¢, O. Ori, Matching polynomial and topological
resonance energy of Cy9, Chem. Phys. Lett., 234, 240-244
(1995).

[37] 1. Gutman, Topology and stability of conjugated hydro-
carbons. The dependence of total z-electron energy on
molecular topology, J. Serb. Chem. Soc., 70, 441-456
(2009).

[38] I. Gutman, O. E. Polansky, Mathematical Concepts, in:
Organic Chemistry, Springer-Verlag, Berlin, 1986.

[39] J. V. Knop, W. R. Miiller, K. Szymanski, N. Trinajsti¢,
Computer Generation of Certain Classes of Molecules,
SKTH, Zagreb, 1985.

[40] G. G. Hall, A graphical model of a class of molecules,
Int. J. Math. Educ. Sci. Technol., 4, 233-240 (1973).

[41] G. G. Hall, Eigenvalues of molecular graphs, Publ. Inst.
Math. Appl., 17, 70-72 (1981).



