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Graph theory provides an elegant and natural representation of molecular symmetry and the resulting group 
expressed in terms of permutations is isomorphic to the permutation-inversion group of Longuet-Higgins. In this pa-
per, using the group theory package GAP, we compute the automorphism group of the Euclidean graph of benzenoid 
chains. 
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INTRODUCTION 

By definition, a weighted graph is a graph 
whose edges and vertices are weighted with differ-
ent weights [1]. The adjacency matrix of a 
weighted graph is defined as: Aij = wij, if i ≠ j and 
vertices i and j are connected by and edge with 
weight wij; Aij = vi, if i = j and weight of the vertex 
i is vi, and, Aij = 0, otherwise. Note that vi can be 
taken as zero if all the nuclei are equivalent. Other-
wise, one may introduce different weights for nuclei 
in different equivalence classes and the same weight 
for the nuclei in the same equivalence classes. 

The symmetry of a graph through the auto-
morphism group of the graph has been studied in 
Refs [2, 3, 4, 5]. As shown by Randi� [7, 8], a 
graph can be depicted in different ways such that 
its point group symmetry or three dimensional per-
ception may differ, but the underlying connectivity 
symmetry is still the same as characterized by the 
automorphism group of the graph, which by defini-

tion comprises permutations of the vertices of the 
graph that leave the adjacency matrix invariant. 
However, the molecular symmetry depends on the 
coordinates of the various nuclei which relate di-
rectly to their three dimensional geometry. 

Throughout this paper, all groups considered 
are assumed to be finite. Our notation is standard 
and taken mainly from [16–21]. For further study 
on applications of group theory in chemistry, we 
refer the interested readers to consult the papers by 
Fujita and Iliev [22–24]. 

RESULT AND DISCUSSION 

Symmetry operations on a graph are called 
graph autumorphisms. They affect only the labels of 
vertices by permuting them so that the adjacency 
matrix of the graph remains unchanged. The graph 
symmetry is completely determined by all the auto-
morphisms it has, i.e. by specifying all the permuta-
tions which leave the adjacency matrix intact. 
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A permutation of the vertices of the Euclid-
ean graph under consideration belongs to the per-
mutation representation of an operation in the 
point group if and only if the corresponding per-
mutation matrix P satisfies PtDP = D, where Pt is 
the transpose of permutation matrix P, and D is the 
adjacency matrix of the graph. All such permuta-
tions of the nuclei which preserve the connectivity 
of the Euclidean graph of the molecule form a 
group which we call the Euclidean distance group. 

 
Fig. 1. The structure of naphthalene 

 
 Fig. 2. Euclidean graph of naphthalene 

Consider the naphthalene molecule to illus-
trate the Euclidean graph and its automorphism 
group. It suffices to measure the Euclidean dis-
tances and then construct the Euclidean distance 
matrix D. It should be mentioned that one does not 

have to work with exact Euclidean distances in 
that a mapping of weights into a set of integers 
would suffice as long as different weights are iden-
tified with different integers. In fact the automor-
phism group of the integer-weighted graph (Fig. 1) 
is identical to the automorphism group of the 
original Euclidean graph.  

The resulting distance matrix is shown below. 
It is far from true that all 10! permutations of the 
vertices do not belong to the automorphism group 
of the weighted graph since the weights of all the 
edges are not the same. For example, the permuta-
tion (1, 2, 3, 4, 5, 6) does not belong to the auto-
morphism group since the resulting graph shown 
in Fig. 2 does not preserve connectivity.  
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0132217257
1021325746
3201122775
2110237564
2312011223
1223102132
7527120312
2775213021
5476231201
7654322110

 

Suppose G is the set of all permutations 
which preserves the Euclidean connectivity. It is 
important to mention that our calculations were 
performed by a GAP program. Using such a pro-
gram, we can recalculate all the examples of 
Balasubramanian [8]. For the sake of complete-
ness, presented below is our GAP-program for 
computing the automorphism group of the Euclid-
ean graph of the mentioned molecule. 

A GAP program for computing the symmetries of naphthalene 

 P:= [[0,1,1,2,2,3,4,5,6,7], [1,0,2,1,3,2,6,7,4,5], [1,2,0,3,1,2,5,7,7,2], 

          [2,1,3,0,2,1,7,2,5,7], [2,3,1,2,0,1,3,2,2,1], [3,2,2,1,1,0,2,1,3,2], 
          [4,6,5,7,3,2,0,1,1,2], [5,7,7,2,2,1,1,0,2,3], [6,4,7,5,2,3,1,2,0,1], 
          [7,5,2,7,1,2,2,3,1,0]]; 

n: = 10; i:=0; H: = []; 
t: = SymmetricGroup(n); 
tt: =Elements(t); 
for a in tt do 
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     x1: =PermutationMat(a,n); 
      x: =TransposedMat(x1); 
      y: =x*P*x1; 
if y = P then AddSet(H,a);fi; 
od; 
G: = Group(H); 
 

The program does not miss any permutation 
since it checks the candidate permutations of the 

given automorphism group in lexiographical order. 
By using this program, the following is obtained: 

 G = {(1)(2)(3)(4)(5)(6)(7)(8)(9)(10), (1,2)(3,4)(5,6)(7,9)(8,10), 

         (1,7)(2,9)(3,8)(4,10)(5,6),(1,9)(2,7)(3,10)(4,8)}. 

 
Let’s consider the anthracene molecule to il-

lustrate the Euclidean graph and its automorphism 
group, as shown in Fig. 3.  

 
 

 Fig. 3. The structure and Euclidean graph of anthracene 

We can see again that all 14! permutations of 
the vertices do not belong to the automorphism 
group of the weighted graph since the weights of 
all the edges are not the same. If we suppose that E 
is the integer matrix and H is the automorphism 
group of weighted graph depicted in Fig. 3, then:  

H = {(1), (1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14), 
         (1,11)(2,13)(3,12)(4,14)(5,7)(6,9)(8,10), 
         (1,13)(2,11)(3,14)(4,12)(5,9)(6,7)}. 

 

Finally, we consider the naphtacene molecule 
(Fig. 4) to illustrate the Euclidean graph and its 
automorphism group. We first compute the integer 
matrix F for calculating the automorphism graph: 

 

 

 
Fig. 4. The structure and Euclidean graph of naphtacene 
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If we suppose that K denotes the automorphism group of Euclidean graph of naphtacene, by using our 

program the following can be obtained: 

K = {(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18), 
                     (1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14)(15,17)(16,18), 
                     (1,15)(2,17)(3,16)(4,18)(5,11)(6,13)(7,9)(8,14)(10,12), 
                     (1,17)(2,15)(3,18)(4,16)(5,13)(6,11)(8,12)(10,14)}.  

 
CONCLUDING REMARKS 

We proved that the automorphism graph of 
naphtalene, anthracene and naphtacene have an 
order of four, and we also found their automor-
phism groups. If we consider a benzenoid chain T 
with n rings, and assume that P is the automor-
phism group of Euclidean graph of T, then it is 
easy to see that T has exactly 4n+2 vertices, and 
our calculations show that the group P has order 4, 
with its elements as follows: 
   P: = {(1)(2)….(4n+1)(4n+2), (1,2)(3,4)(5,6)…  

             (2n+1,2n+3)(2n+2,2n+4)…(4n,4n+2)}. 
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