GHTMDD – 481 Received: January 17, 2005 Accepted: May 16, 2006

Short communication

IR-LD SPECTROSCOPY OF BENZIL ORIENTED AS SOLUTION IN NEMATIC LIQUID CRYSTAL AND MELTED POLYCRYSTALLINE SOLID SAMPLE

Bojidarka B. Ivanova^{1*}, Liliya I. Pindeva²

¹University of Sofia, Department of Chemistry, 1164 Sofia, Bulgaria ²Technical University, Department of Chemistry, 1756 Sofia, Bulgaria *ahbi@chem.uni-sofia.bg

An IR-LD spectral analysis was performed on benzil as a solution in nematic liquid crystal and as melted polycrystalline solid sample, using the orientation technique. An experimental vibrational assignment of IR-characteristic bands both in solution and in solid state was made, thus explaining some of the crystal field effects in solid-state on the IR-maxima.

Key words: benzil; IR-LD spectroscopy; solution; solid-state; overtone

ИНФРАЦРВЕНА СПЕКТРОСКОПИЈА СО ЛИНЕАРЕН ДИХРОИЗАМ НА БЕНЗИЛ ОРИЕНТИРАН ВО НЕМАТИЧЕН ТЕЧЕН КРИСТАЛ И ВО СТОПЕН ПОЛИКРИСТАЛЕН ЦВРСТ ПРИМЕРОК

Со инфрацрвена спектроскопија со линеарен дихроизам (IR-LD) е извршена спектрална анализа на бензил во стопен поликристален цврст примерок од нематични течнии кристали и поликристални примероци во цврста состојба, користејќи ја ориентационата техника. Извршена е експериментална вибрациона асигнација на карактеристиччните инфрацрвени ленти во раствор и во цврста состојба. На тој начин се објаснети некои од ефектите на кристалното поле врз максимумите во спектрите на примероци во цврста состојба.

Клучни зборови: бензил; инфрацрвена спектроскопија со линеарен дихроизам; раствор; цврста состојба

INTRODUCTION

Benzil, 1,2-diphenylethane-1,2-dione (Scheme I), is a photoinitiator that breaks down into free radicals upon exposure to ultraviolet radiation, and is an example of optically active compound in the crystalline state only [1]. Its potent activatotion of microsomal epoxide hydrolase *in vitro* was an object of a series of theoretical [2], crystallographic [3, 4] and infrared spectral [2, 5, 6] studies. Detailed experimental IR-band assignment including the overtones is possible by application of lineardichroic infrared spectral (IR-LD) analysis, which is an object of present work. Presented here are the results of IR-LD spectral analysis of benzil as a solution in nematic liquid crystal and as melted polycrystalline solid sample.

Scheme 1

EXPERIMENTAL

Benzil was purchased from Aldrich.

The IR-spectra were recorded on a Bomem-Michelson 100 FTIR-spectrometer $(4000-400 \text{ cm}^{-1})$

equipped with a Perkin Elmer wire-grid polarizer. The oriented samples were obtained in two ways: (i) film, crystallized between KBr plates annealed at 170° C, and (ii) a solution in nematic mesophase. A 4'-cyano-4'-alkylbicyclohexyl mixture (ZLI 1695, Merck) was used for the orientation of the benzil. The orientation technique and the procedure used for the IR-LD data interpretation have been described in details elsewhere [7, 8]. The difference-reduction procedure for polarized IRspectra interpretation involves subtraction of a perpendicular spectrum, (IR_s), obtained at a 90° angle between the polarized light beam electric vector and the orientation of the sample, from a parallel spectrum (IR_p) obtained at a co-linear mutual orientation. The recorded *difference* (IR_p-IR_s) spectrum divides the parallel (A_p) and perpendicular (A_s) integrated absorbences of each band into positives, originating from transition moments that form average angles with the orientation direction (**n**) between 0^0 and 54.7⁰, and negative ones, corresponding to transition moments between 54.7° and 90[°]. In The perpendicular spectrum is multiplied by the parameter c, subtracted from the parallel spectrum, and c is varied until a band or set of bands are eliminated. The simultaneous disappearance of bands in the obtained (IR_p-cIR_s) reduced IR-LD spectrum indicates a co-linearity of the corresponding transition moments, thus providing information regarding the mutual disposition of the molecular fragments. This elimination method is graphically carried out using a subtracting procedure attached to the program for processing of IR spectra.

RESULTS AND DISCUSSION

The difference IR-LD spectra of benzil oriented as a solution in nematic liquid crystal (Fig. 1.1) and as polycrystalline melted film (Fig. 1.2) indicated a significant degree of orientation of the guest molecule, independent of the technique used. The characteristic IR-frequencies are listed in Table 1.

The corresponding in-plane and out-of-plane modes in separate aromatic rings are noted using the Wilson notation, assuming that the discussed structural fragments in the benzil molecule possessed $C_{2\nu}$ symmetry.

According to X-ray data [3, 4] benzil crystallizes at room temperature in a trigonal system with space group D_3^4 (P3₁21). The molecule is composed of two nearly planar benzoyl groups closing a torsion angle of 108°. According to known theoretical data [2], the molecule possesses a C₂ symmetry, causing the existence of in-phase and out-of-phase splitting in the crystal and in the solution as well.

Table 1

IR-characteristic bands of benzil in $1700 - 400 \text{ cm}^{-1}$ range in solution and in solid state

Phase		Assignment*
Solution	Solid-state	Assignment
v/ cm^{-1}	ν / cm ⁻¹	
1683, 1674	1681, 1673, 1660, 1654	$\nu^{as}{}_{C=O,}\nu^{s}{}_{C=O}$
1597	1597	8a (A1)
1581	1579	8b (B ₂)
1492	1490	19a (A1)
1463	1465	19b (B ₂)
1317	1324	3 (B ₂)
1174	1170	9a (A1)
1143	1140	9b (B ₂)
1072	1070	18a (A1)
1025	1025	18b (B ₂)
1000	999	1 (A ₁)
877	869	d_1
719	725	11 (B ₁)
688	679	4 (B ₁)

*According Wilson notation [9]

Fig. 1. Difference IR-LD spectra of benzil oriented as a solution in nematic liquid crystal (1) and melted polycrystalline solid sample (2)

Fig. 2. Non-polarized IR- (1) and reduced IR-LD spectra of benzil oriented as a solution in nematic liquid crystal after elimination of peaks at 1597 cm⁻¹ (A(2)), 1674 cm⁻¹ (A(3)) and 719 cm⁻¹ (B(2))

IR-LD analysis of oriented benzil as nematic liquid crystal solution

The non-polarized IR-spectrum (Fig. 2.1) is characterized with pairs of maxima at 1683 cm⁻¹ and 1674 cm⁻¹ corresponding to $v^{as}_{C=O}$ and $v^{s}_{C=O}$ stretching modes [2] (Table 1). The peaks at 1597 cm⁻¹ and 1581 cm⁻¹ are assigned to 8a and 8b inplane skeletal frequencies of mono-substituted benzenes. The 1000 – 500 cm⁻¹ region shows series of peaks at 794 cm⁻¹, 719 cm⁻¹, 688 cm⁻¹ and 644 cm⁻¹ assigned in [2] as 11- γ_{CH} , 4- γ_{Ar} , 6a and 6b modes of phenyl fragments (Fig. 3.1). However, detailed assignment of IR-maxima and corrections can be made in the following IR-LD spectral analysis.

The reducing-difference procedure on polarized IR-LD spectra interpretation leads to the following results: (i) The elimination of the 1597 cm^{-1} peak (Fig. 2A.2) resulted in a observation of a 1581 cm⁻¹ peakand disappearance of the 1000 cm⁻¹ maximum. This new peak corresponds to 1 inplane (A₁), and the 1597 cm^{-1} peak can be assigned as 8a mode; (ii) The elimination of the 1674 cm^{-1} peak leads to the disappearance of the 1581 cm⁻¹ and 1465 cm⁻¹ peaks (Fig. 2A.3), assigned as 8b and 19b modes. The results correlate well with the theoretical data [2], where the values are 1580 cm⁻¹ and 1458 cm⁻¹. (iii) The simultaneous elimination of the 719 cm⁻¹ and 688 cm⁻¹ peaks (Fig. 2B.2) helped assign their character as 11- γ_{CH} and 4- γ_{Ar} of mono-substituted benzenes, in contrast to the theoretical data, where the peaks are assigned as $4-\gamma_{Ar}$ and 6a [2]. Moreover, if the 688 cm^{-1} maximum corresponds to A₁ modes, it must be eliminated with the 8a peak (Fig. 2.2), an outcome that is not observed when Figs. 2A.2 and 2B.2 are compared.

IR-LD analysis of oriented benzil as melted polycrystalline solid

In contrast to the IR-spectrum in solution, the non-polarized solid-state spectrum in the $1720 - 1640 \text{ cm}^{-1}$ range is characterized with multiple bands, where the deconvolution and curve-fitting procedure resulted in series of peaks at 1681 cm^{-1} , 1673 cm^{-1} , 1660 cm^{-1} and 1654 cm^{-1} , respectively (Table 1). This result could be explained with crystal field splitting in solid-state. The detailed IR-characteristic bands assignment in solid-state of the compound studied, as well as the overtone and combination mode determination, is made by the IR-LD analysis described below.

The elimination of the 3315 cm^{-1} peak leads to disappearance of only the 1657 cm^{-1} peak, thus indicated the overtone character of the first maximum (Fig. 3A.2).

Fig. 3. Non-polarized IR- (1) and reduced IR-LD spectra of benzil oriented as melted polycrystalline solid sample after elimination of peaks at 3315 cm⁻¹ (A(2)) and 1999 cm⁻¹ (B(2))

The elimination of the 1999 cm⁻¹ maximum (Fig. 3B.2) caused the disappearance of the 1739 cm⁻¹, 1597 cm⁻¹, 999 cm⁻¹, 873 cm⁻¹, 725 cm⁻¹ and 679 cm⁻¹ peaks. This result indicated the character of the first two maxima as 1998 cm⁻¹ = 2 × 999 cm⁻¹ and 1740 = 2 × 870, thus correlating well with previous data [6]. The peaks at 999 cm⁻¹ and 870 cm⁻¹

correspond to 1 (in-plane A_1) mode and d_1 [2]. The last procedure indicated that the elimination of pairs of $11-\gamma_{CH}$ and $4-\gamma_{Ar}$ out of-plane peaks at 725 cm⁻¹ and 679 cm⁻¹ gives rise to neighboring peaks at 717 cm⁻¹ and 683 cm⁻¹ with the same character. This fact is a result of the near perpendicular orientation of both benzenes in the frame of the ben-

ole

43

zil molecule, closing an angle of 108°, as determined by single crystal X-ray diffraction in [3, 4].

Acknowledgement. The authors would like to thank Prof. M.G. Arnaudov (Sofia University "St. Kl. Ohridski") for the helpful discussions.

REFERENCE

- F. Luis, V. Ferreira, I. F. Machado, J. P. Da Silva, A. S. Oliveira, A diffuse reflectance comparative study of benzil inclusion within microcrystalline cellulose and βcyclodextrin, *Photochem. Photobiol. Sci.*, 3 (2), 174–185 (2004).
- [2] T. Kolev, B. Stamboliyska, Vibrational spectra and structure of benzil and its ¹⁸O- and d₁₀-labelled derivatives: A quantum chemical and experimental study, *Spectrochim. Acta*, **58A**, 3127–3137 (2002).
- [3] C. Brown, R. Sadanaga, The crystal structure of benzil, Acta Crystallogr. 18, 158–164 (1965).

- [4] E. Gabe, Y. Le Page, F. Lee, L. Baklay, The structure of 2,2',4,4',6,6'-hexa-*tert*-butylbenzil, *Acta Crystallogr.* **37B**, 197–200 (1981).
- [5] T. Kolev, I. Juchnovski, IR spectroscopic study of benzyl, Spectrosc. Lett. 26, 1–23 (1993).
- [6] L. Colombo, D. Krin, V. Volovsek, N. Lindsay, J. Sullyvan, J. Durig, Infrared spectroscopic investigations of benzyl derivatives, J. Phys. Chem. 93, 2690–2697 (1989).
- [7] B. Jordanov, R. Nentchovska, B. Schrader, FT-IR linear dichroic solute spectra of nematic solutions as a tool for IR band assignment, J. Mol. Struct. 297, 401–406 (1993).
- [8] M. G. Arnaudov, B. B. Ivanova, Sh. G. Dinkov, A linear dichroic infrared (IR-LD) solid state spectral study of 4aminopyridine, *Vibr. Spectroscopy*, **37** (1), 145–147 (2005).
- [9] G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Akademiai Kiado, Budapest, 1969.