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Multivariate analysis models were developed to evaluate the results obtained from a compatibility 

study designed for ibuprofen with a large group of different types of excipients, as a possible approach for 

rapid screening of the incompatibility between the active pharmaceutical ingredient (API) and excipients. 

The solid-state characterization of the binary mixtures was performed by Fourier transform infrared spec-

troscopy (FTIR) and differential scanning calorimetry (DSC). Principal component analysis (PCA) and 

partial least squares-discriminant analysis (PLS-DA) using SIMCA® software were applied for evaluation 

of the experimentally obtained results. The optimal PCA model for the FTIR spectra explains 96.2 % of 

the variations in the dataset with good statistical indicators (R2X = 0.960, Q2 = 0.900), which was also the 

case for the PCA model for the DSC curves (R2X = 0.981, Q2 = 0.866). The applied PLS-DA models have 

shown similar behaviour to the PCA. Moreover, the main spectral variations in the FTIR spectra and the 

thermal events in the DSC data were attributed the highest variable importance for the projection (VIP) 

scores in the corresponding VIP plots, confirming the model capability for predicting ibuprofen interac-

tions. Furthermore, the prediction power of the optimal models for FTIR and DSC experimental data was 

evaluated by the root mean square error of prediction (RMSEP) of 0.10 and 0.16, respectively. The ob-

tained results demonstrated the potential of multivariate statistical analysis as a machine learning-based 

technique for screening and prediction of ibuprofen-excipients solid-state compatibility in the preformula-

tion phase of the pharmaceutical development of dosage forms. 

 

Keywords: interaction; binary mixtures; principal component analysis; partial least squares-discriminant 

analysis; machine learning 

 

 

МУЛТИВАРИЈАНТНА АНАЛИЗА ЗА БРЗ СКРИНИНГ И ПРЕДВИДУВАЊЕ НА КОМПАТИБИЛНОСТА  

ВО ЦВРСТА СОСТОЈБА ВО ФАРМАЦЕВТСКИТЕ ПРЕДФОРМУЛАЦИСКИ СТУДИИ 

–ТРАСИРАЊЕ НА ПАТОТ ДО МАШИНСКОТО УЧЕЊЕ– 

 

Беа развиени мултиваријантни модели за анализа на евалуација на резултатите добиени во 

рамките на претходно дизајнирана студија за компатибилност на ибупрофен со поголема група 

ексципиенти, со цел брз скрининг на компатибилноста на активната супстанција и ексципиентите. 

За карактеризација на бинарните смеси во цврста состојба беа користени инфрацрвената 

спектроскопија со Фуриеова трансформација (FTIR) и диференцијалната скенирачка 
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калориметрија (DSC). Анализата на основната компонента (PCA) и дискриминаторната анализа на 

парцијални најмали квадрати (PLS‒DA), со помош на софтверскиот пакет SIMCA®, беа применети 

за евалуација на експериментално добиените резултати. Оптималниот модел на РСА добиен за 

FTIR–спектрите објаснува 96,2 % од промените во сетот со податоци, со задоволителни 

статистички параметри  (R2X = 0,960, Q2 = 0,900), слично како и моделот на PCA развиен за 

кривите на DSC (R2X = 0,981, Q2 = 0,866). Применетите PLS-DA модели покажаа слични 

карактеристики како и соодветните РСА модели. Главните спектрални промени во FTIR–

спектрите и термалните ефекти во кривите на DSC се карактеризираат со највисоки вредности за 

степенот на значајност на променливите (Variable importance for the projection – VIP) во 

соодветните VIP–графици, што ја потврдува способноста на моделот да ги предвидува 

интеракциите на ибупрофен. Спсобноста за предвидување оптимални модели добиени од 

експерименталните податоци за FTIR и DSC беше евалуаирана преку процена на вредноста на 

квадратниот корен од средната квадратна грешка од предвидувањето, односно RMSEP 0,10 и 0,16, 

соодветно. Добиените резултати го потврдуваат потенцијалот на мултиваријантната статистичка 

анализа како техника базирана на машинското учење за скрининг и предвидување на 

компатибилноста на ибупрофен и ексципиентите во предформулацискиот фармацевтски развој на 

дозирани форми. 

 

Клучни зборови: интеракција; бинарни смеси; анализа на основната компонента;  

дискриминаторна анализа на парцијални најмали квадрати; машинско учење 
 

 

1. INTRODUCTION 

 

The compatibility of the active pharmaceuti-

cal ingredient (API) with potential excipients is a 

significant segment of pharmaceutical formulation 

development. Due to the close contact of the API 

with one or more excipients in the formulation, any 

kind of interaction or incompatibility between 

them might result in a negative impact on the sta-

bility, physical, chemical or efficacy attributes of 

the finished product. Therefore, for a rational se-

lection of excipients, screening of API-excipient 

compatibility is a key aspect of the formulation 

development process for ensuring safe and robust 

product development.1  

With the purpose of fast and precise evalua-

tion of the API-excipient compatibility, as well as 

appropriate choice of the excipients, different ana-

lytical techniques such as spectroscopic, thermoan-

alytical, microscopic, diffraction, as well as chro-

matographic methods are widely applied for API-

excipient compatibility testing. Fourier transform 

infrared spectroscopy, as mid-infrared (MIR) and 

near-infrared (NIR) spectroscopy, along with Ra-

man spectroscopy2‒4 are known as non-destructive 

and low-cost techniques giving valuable and fast 

information about the structure and chemical na-

ture of the sample, and thus the observed structural 

changes signalling possible incompatibilities.5 

Spectroscopic analysis itself might not be suffi-

cient for obtaining all the relevant data in some 

cases. Therefore, its combination with additional 

techniques such as x-ray powder diffraction 

(XRPD), differential scanning calorimetry (DSC) 

and thermogravimetry (TG) or their simultaneous 

combination as TG-IR and DSC-Raman can be 

very valuable in such cases.6 

Besides the great potential and excellent da-
ta that can be obtained with the above-mentioned 
techniques, interpretation of spectroscopic data can 
be at times really challenging, since some of the 
spectroscopic bands might be misinterpreted, par-
tially interpreted or even wrongly interpreted. 
Therefore, the employment of artificial intelligence 
(AI) and machine learning (ML) based algorithms 
for statistical analysis of large sets of spectroscopic 
data can be very useful for obtaining accurate qual-
itative and quantitative data. Moreover, the intro-
duction of AI, ML and computer-assisted chemis-
try in drug development has shown a remarkable 
impact on the success rate in the field of pharma-
ceutical technology, providing a greater under-
standing of the data generated during pharmaceuti-
cal development.7 

Multivariate statistical methods of analysis 
are among the most extensively used machine 
learning-based methods for the interpretation of 
large data sets. This should not be surprising due to 
the fact that in the recent years the U.S. Food & 
Drug Administration (FDA) and the International 
Conference on Harmonisation (ICH) have focused 
extensively on building the quality into pharma-
ceutical and other manufacturing processes, incor-
porating the quality by design (QbD) approach 
throughout.8 Since critical quality attributes 
(CQAs), critical material attributes (CMAs) and 
critical process parameters (CPPs) are essential 
QbD elements, machine learning is now consid-
ered a powerful tool for mapping the CMAs and 
CPPs as input variables and CQAs as output varia-
bles in order to generate high-quality data and ena-
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ble more accurate predictions for new samples 
through the application of optimized and trained 
models. The QbD approach9 is often combined 
with process analytical technology (PAT) strate-
gies10,11 and multivariate analysis, which are de-
signed to achieve more systematic, enhanced ac-
quisition of process-related data, that is high in 
volume, variety and velocity of generation.12 As a 
result, the utilization of these ML-based algorithms 
facilitates continual improvement and innovation 
throughout every aspect of the pharmaceutical 
product`s lifecycle. Furthermore, principal compo-
nent analysis (PCA) and partial least squares re-
gression analysis (PLS) have been shown as a 
powerful tool for the needs of pharmaceutical 
product development. PCA as a dimension reduc-
tion method is a vastly used approach for the so-
called unsupervised learning with the main aim of 
detecting underlying relationships or patterns in 
unlabelled data. Therefore, hidden patterns within 
complex systems can be successfully identified by 
AI and ML-based techniques. In this context, an 
artificial neural network model, developed for a 
large number of drugs and excipients, has been 
shown as appropriate for developing a predictive 
tool for drug-excipient incompatibility.13 The com-
bined use of PCA and hierarchical cluster analysis 
(HCA) with TG analysis provided a rapid model 
for investigation of the compatibility of atenolol 
with selected excipients,14 as well as in combina-
tion with DSC and TG analysis to study the com-
patibility of acetazolamide with preferred excipi-
ents.15 Moreover, PLS-DA in combination with 
attenuated total reflectance (ATR)-FTIR has also 
been shown as appropriate for quantitative deter-
mination and classification of diclofenac sodium 
content in commercially available tablets.16 PLS 
regression analysis combined with FTIR and DSC 
analysis has been used to quantitatively determine 
the trends related to magnesium stearate content 
and stress conditions in binary mixtures of ibu-
profen and magnesium stearate, which are respon-
sible for the detected solid-state interaction.17 Over 
the past decade, the expansion of NIR spectrosco-
py combined with multivariate analysis has con-
tributed significantly to pharmaceutical technology 
improvement,18 being the most common PAT tool 
for monitoring different technological processes 
and properties of the finished pharmaceutical 
products. PCA and PLS regression analyses have 
been also used in combination with NIR spectros-
copy and laser diffraction analysis in order to de-
velop a new model for rapid particle size analysis 
of ibuprofen.19 The multivariate analysis approach 
has been widely established recently for testing of 

compatibility between active pharmaceutical in-
gredients and excipients, as well as drug-drug 
compatibility testing. 

Ibuprofen is one of the most popular non-

steroidal anti-inflammatory drugs (NSAIDs) wide-

ly used in the treatment of acute pain and fever, as 

well as in some chronic conditions. Thanks to its 

excellent analgesic and anti-inflammatory proper-

ties, ibuprofen is used as an active pharmaceutical 

ingredient in various pharmaceutical dosage forms 

for oral and topical administration, such as tablets, 

oral suspensions, and gels. The presence of a car-

boxylic functional group in its structure makes 

ibuprofen a highly reactive compound. Therefore, 

it can easily interact with some of the excipients' 

functional groups, under certain external condi-

tions. Taking this into consideration, ibuprofen was 

chosen as a model API in this study. The main goal 

of this study was to design a compatibility study of 

ibuprofen with a broad spectrum of different excip-

ients which are commonly used in the formulation 

of solid and liquid pharmaceutical dosage forms 

and to test the potential application of multivariate 

analysis as a tool for evaluation and interpretation 

of the results obtained during the compatibility 

studies. Furthermore, an assessment of the poten-

tial of the statistical models to predict the compati-

bility between API and excipients and to success-

fully detect the variables responsible for the ob-

served interactions has been made. 
 

 

2. MATERIALS AND METHODS 

 

2.1. Preparation of the binary mixtures 

 

Binary mixtures of ibuprofen (2-[4-(2-

methylpropyl)phenyl]propanoic acid) with the se-

lected excipients were prepared in mass ratio 1:1, 

simulating the worst-case outcome, and labeled 

according to Table 1. The prepared binary mixtures 

were analyzed by FTIR and DSC and were placed 

in stability chambers, exposed to stress conditions 

at 25 °С/60 % RH and 40 °С/75 % RH, for 30 

days. After this period, the stressed binary mix-

tures were analyzed by the same analytical tech-

niques. The stressed and unstressed ibuprofen in 

pure form, as well as the binary mixtures marked 

from BM1‒BM54 (Table 1) were used for building 

of the initial model, while the binary mixtures 

marked from BM55‒BM60 were used for building 

of the validation test model. 
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    T a b l e  1 
 

Unstressed and stressed binary mixtures of ibuprofen with selected excipients 
 

Binary mixture and its label Technological process 

Ibuprofen 

Unstressed – Ibuprofen 0 

/ 25 °C/60 % RH – Ibuprofen 25 

40 °C/75 % RH – Ibuprofen 40 

Ibuprofen + Silicon dioxide, colloidal  

anhydrous 

Unstressed binary mixture – BM1 

Dry mixing 25 °C/60 % RH – BM2 

40 °C/75 % RH – BM3 

Ibuprofen + Microcrystalline cellulose 

Unstressed binary mixture – BM4 

Dry mixing 25 °C/60 % RH – BM5 

40 °C/75 % RH – BM6 

Ibuprofen + Citric acid monohydrate 

Unstressed binary mixture – BM7 

Dry mixing 25 °C/60 % RH – BM8 

40 °C/75 % RH – BM9 

Ibuprofen + Crosscarmelose sodium 

Unstressed binary mixture – BM10 

Dry mixing 25 °C/60 % RH – BM11 

40 °C/75 % RH – BM12  

Ibuprofen + Disodium edetate 

Unstressed binary mixture – BM13 

Dry mixing 25 °C/60 % RH – BM14 

40 °C/75 % RH – BM15 

Ibuprofen + Emulsion simethicone 30 % 

Unstressed binary mixture – BM16 

Dry mixing 25 °C/60 % RH – BM17 

40 °C/75 % RH – BM18 

Ibuprofen + Glycerol 

Unstressed binary mixture – BM19 

Dry mixing 25 °C/60 % RH – BM20 

40 °C/75 % RH – BM21 

Ibuprofen + Glyceryl dibehenate 

Unstressed binary mixture – BM22 

Dry mixing 25 °C/60 % RH – BM23 

40 °C/75 % RH – BM24 

Ibuprofen + Lactose monohydrate 

Unstressed binary mixture – BM25 

Dry mixing 25 °C/60 % RH – BM26 

40 °C/75 % RH – BM27 

Ibuprofen + Magnesium stearate 

Unstressed binary mixture – BM28 

Dry mixing 25 °C/60 % RH – BM29 

40 °C/75 % RH – BM30 

Ibuprofen + Sodium chloride 

Unstressed binary mixture – BM31 

Dry mixing 25 °C/60 % RH – BM32 

40 °C/75 % RH – BM33 

Ibuprofen + Saccharin sodium salt 

Unstressed binary mixture – BM34 

Dry mixing 25 °C/60 % RH – BM35 

40 °C/75 % RH – BM36 

Ibuprofen + Sodium citrate dihydrate 

Unstressed binary mixture – BM37 

Dry mixing 25 °C/60 % RH – BM38 

40 °C/75 % RH – BM39 

Ibuprofen + Sorbitol 

Unstressed binary mixture – BM40 

Dry mixing 25 °C/60 % RH – BM41 

40 °C/75 % RH – BM42 

Ibuprofen + Maize starch 

Unstressed binary mixture – BM43 

Dry mixing 25 °C/60 % RH – BM44 

40 °C/75 % RH – BM45 
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Table 1 continue   

Ibuprofen + Sucrose 

Unstressed binary mixture – BM46 

Dry mixing 25 °C/60 % RH – BM47 

40 °C/75 % RH – BM48 

Ibuprofen + Xanthan gum 

Unstressed binary mixture – BM49 

Dry mixing 25 °C/60 % RH – BM50 

40 °C/75 % RH – BM51 

Ibuprofen + Sodium hydrogen carbonate 

Unstressed binary mixture – BM52 

Wet granulation with water 25 °C/60 % RH – BM53 

40 °C/75 % RH – BM54 

Ibuprofen + Sodium hydrogen carbonate 

Unstressed binary mixture – BM55 

Dry mixing 25 °C/60 % RH – BM56 

40 °C/75 % RH – BM57 

Ibuprofen + Polysorbate 80 

Unstressed binary mixture – BM58 

Dry mixing 25 °C/60 % RH – BM59 

40 °C/75 % RH – BM60 

    *BM – binary mixture. **RH – relative humidity. 
 

 

2.2. Methods 
 

2.2.1. Fourier transform infrared  

(FTIR) spectroscopy 
 

Varian 660 FTIR spectrometer (Varian Inc., 

Palo Alto, California, USA) was employed for col-

lection of the FTIR spectra. The attenuated total 

reflectance (ATR) spectra (resolution 4 cm–1, 16 

scans per spectrum) were collected by using MIR-

Acle ZnSe ATR module (Pike Technologies) low-

pressure micrometer clamp, in the mid-infrared 

region from 4000 to 550 cm–1. A background spec-

trum was collected prior to each sample collection. 

 

2.2.2. Differential scanning calorimetry (DSC) 

 

DSC measurements were performed on a 

NETZSCH DSC 204 F1 Phoenix instrument, in 

aluminum pans with perforated lid (sample mass ≈ 

3 mg), from 25 to 100 °С, with 10 °C/min heating 

rate, under dynamic nitrogen atmosphere (30 

ml/min). Indium standard was used for calibration 

of the instrument. 

 

2.2.3. Multivariate data analysis 

 

PCA and partial least squares-discriminant 

analysis (PLS-DA) were used to analyze the varia-

tions within FTIR spectra and DSC curves and 

their relation to the possible detected interactions, 

by using the software SIMCA® 17 (Umetrics, 

Umeå, Sweden). The stressed and unstressed ibu-

profen in pure form and the unstressed and stressed 

binary mixtures were defined as rows (objects), 

while the wavenumbers of the FTIR spectra and 

the temperature points from the DSC temperature 

range were defined as columns (variables) within 

the data set. The FTIR spectra and DSC curves 

were normalized using standard normal variate 

(SNV) processing and each model was character-

ized by correlation (R2X and R2Y) and predictivity 

(Q2) coefficients. The score scatter plots and the 

variable importance of the projection (VIP) plots 

were used for further evaluation of the models. 

 
3. RESULTS AND DISCUSSION 

 

3.1. Analysis of unstressed and stressed  

binary mixtures 
 

3.1.1. Solid-state characterization  

of the experimental data 
 

The analysis of the obtained FTIR spectra 

revealed that the observed changes in terms of 

band shift, intensity, and shape, as well as appear-

ance of new bands, can be generally divided into 

two groups. Binary mixtures in which no changes 

were observed, i.e., the binary mixtures that remain 

stable when exposed to stress conditions, belong to 

the first group. The second group comprises the 

cases where some serious changes were observed 

within the binary mixtures that arise as a result of 

chemical interactions and the formation of new 

molecular entities. 

Similarly, the presence of the characteristic 

endothermic peak corresponding to the melting of 

ibuprofen (maximum temperature 77.7 °C and en-

thalpy ∆H = 136.9 J/g) in the DSC curves of the 

binary mixtures is considered proof of the absence 

of interactions between the API and corresponding 
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excipients, and its presence was observed in almost 

all of the analyzed mixtures. The shift of the endo-

thermic peak of ibuprofen to lower temperatures in 

some of the binary mixtures, compared to pure 

ibuprofen melting peak, is expected and justified, 

keeping in mind that the analyzed samples are 

physical mixtures of two components, so these, 

along with the enthalpy changes, are not regarded 

as interactions. 

Based on the presented FTIR and DSC re-

sults it can be observed that the increase in temper-

ature and relative humidity most surely leads to an 

interaction in the binary mixture of ibuprofen and 

sodium hydrogen carbonate, prepared by dry mix-

ing. In the FTIR spectrum of the mixture exposed 

to 40 °С/75 % RH (Fig. 1a) the intensity of the 

band from the carbonyl stretching vibration of ibu-

profen at 1710 cm–1 is significantly decreased and 

almost lost. This might be an indication of the de-

creasing quantity of unreacted ibuprofen in the 

mixture. The appearance of new bands at 1475 cm–1 

and 1406 cm–1, resulting from asymmetric and 

symmetric stretching vibrations of the carboxylate 

group in the possible structure of the newly formed 

entity, can be considered an additional indication 

of the chemical interaction between ibuprofen and 

sodium hydrogen carbonate forming a new molec-

ular entity.20,21 Furthermore, the very low intensity 

band from asymmetric stretching C–O vibrational 

mode at 1293 cm–1 appearing for the first time in 

the binary mixture exposed to 25 °C/60 % RH, can 

be identified as a clearly defined new vibrational 

band with medium intensity in the mixture exposed 

to 40 °C/75 % RH. This can be attributed to the 

gradual formation of a new entity, starting at lower 

humidity and becoming more intensive as the hu-

midity level increases. Moreover, the appearance 

of new vibrational bands at 1251 cm–1, 1057 cm–1, 

1021 cm–1 and 942 cm–1 can be considered as addi-

tional confirmation of the interaction taking place 

between ibuprofen and sodium hydrogen car-

bonate. In addition, the vibrational band at 865 cm–1 

is lost in the FTIR spectra of the binary mixture 

exposed to higher temperature and humidity levels. 

Furthermore, when the same binary mixture was 

prepared by wet granulation with water, the previ-

ously described changes in terms of the appearance 

of new vibrational bands could be already ob-

served in the unstressed binary mixture (Fig. 1b), 

implying that this interaction is moisture depend-

ent. This is in good agreement with the disappear-

ance of the endothermic peak of ibuprofen and the 

appearance of a new endothermic peak at around 

85 °С in the corresponding DSC curves (Fig. 3b), 

attributed to the dehydration process that is known 

to occur in that temperature range.22 The same bi-

nary mixture, prepared by dry mixing and stressed 

at 40 °C/75 % RH (Fig. 3a), displayed similar 

thermal behavior. 

 
 

 
 

Fig. 1. FTIR spectra in the fingerprint region of the unstressed (Day 0) and stressed (Day 30) binary mixture of ibuprofen and sodium 

hydrogen carbonate prepared by a) dry mixing and b) wet granulation, c) binary mixture of ibuprofen and magnesium stearate and  

d) ibuprofen and polysorbate 80 
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The discussed product of interaction is 

formed as a result of a simple acid-base reaction 

(Fig. 2). Since ibuprofen contains a carboxylic 

functional group in its structure, it is considered a 

weak acid (pH = 4, pKa = 5.2), while the sodium 

hydrogen carbonate is a weak base (pH ≈ 8.5, pKa 

= 10.3, pKb = 7.7). In the presence of water, during 

the preparation of the binary mixture, the sodium 

hydrogen carbonate easily deprotonates the car-

boxylic group in the ibuprofen molecule, which 

acts as a proton donor. The sodium hydrogen car-

bonate donates an electron pair from its negatively 

charged oxygen atom to form a bond with the 

deprotonated CO2
‒ group, while at the same time it 

accepts the proton from the carboxylic group to 

form carbonic acid. This reaction produces sodium 

salt of ibuprofen and carbonic acid, HOCO2H, 

which is very unstable and readily decomposes to 

carbon dioxide and water. In presence of the ex-

cess of water molecule, as well as the high atmos-

pheric moisture, the obtained sodium salt then 

quickly converts to its stable dihydrate form. 
 

 

CH3

CH3

O

CH3

O

H

+
Na O

O

OH

H2O

CH3

CH3

O Na

CH3

O

+

Ibuprofen sodium

Atmospheric 
moisture

CH3

CH3

O Na

CH3

O

O

H

H

O

H

H

Ibuprofen sodium dihydrate

Ibuprofen Sodium hydrogen
carbonate

CH3

CH3

O Na

CH3

O

+ O

H

H

+ O C O

Ibuprofen sodium

HO OH

O

Carbonic acid

 
 

Fig. 2. Reaction scheme for the interaction between ibuprofen and sodium hydrogen carbonate 
 

 

A notable decrease in the intensity of the 

band from the carbonyl mode of ibuprofen at 1710 

cm–1 was also observed in the unstressed and 

stressed binary mixtures of ibuprofen with the ex-

cipient magnesium stearate (Fig. 1c). In line with 

this observation, the DSC curve of the unstressed 

binary mixture exhibits an endotherm at around 58 

°С, while the characteristic endothermic peak of 

ibuprofen has disappeared (Fig. 3c). This result is 

in good agreement with the literature data, since 

the interaction between ibuprofen and magnesium 

stearate has already been studied and described in 

the scientific literature.17 Within this paper, mag-

nesium stearate was included solely for the pur-

pose of building the statistical model for prediction 

of interactions. Moreover, it can be observed that 

the band due to the asymmetric stretching carbox-

ylate mode at 1573 cm–1, originating from magne-

sium stearate, is shifted to lower frequencies in the 

FTIR spectra of the stressed binary mixtures and is 

accompanied by the appearance of new bands at 

1635 cm–1 and 1538 cm–1 in the binary mixture 

stressed at 40 °C/75 % RH (Fig. 1c). Furthermore, 

Stojanovska Pecova et al.17 showed that the ac-

companying shift of the characteristic endothermic 

peak of ibuprofen to lower temperature23 in the 

corresponding DSC curve of the unstressed binary 

mixture is not a result of the simultaneous melting 

of the eutectic mixture of ibuprofen and magnesi-

um stearate, as it was believed,24 but is a new en-

dotherm originating from two simultaneous evapo-

rating processes: evaporation of the water from the 

pseudopolymorphic form of magnesium stearate 

and evaporation of the water from the in situ-

generated diibuprofen magnesium tetrahydrate 

salt.17 This was further confirmed by DSC/TG 

analysis of unstressed and stressed binary mix-

tures, where the DSC/TG curves of the stressed 

mixtures exhibited a mass loss in the same temper-

ature range as the endotherms in the DSC curves. 

Furthermore, the mass loss was shifted to higher 

temperatures by elevating the stress conditions, 

implying that the endotherm in the binary mix-

tures, observed before the ibuprofen melting peak, 

cannot be attributed to eutectic melting, but is a 

result of an evaporation process. 
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Fig. 3. DSC curves of the unstressed (Day 0) and stressed (Day 30) binary mixture of ibuprofen and sodium hydrogen carbonate 

prepared by a) dry mixing and b) wet granulation, c) binary mixture of ibuprofen and magnesium stearate  

and d) ibuprofen and polysorbate 80 

 

While the above-discussed changes unam-

biguously implied interactions taking place in the 

binary mixtures, some of the studied mixtures ex-

hibited physical changes which are not considered 

as interactions. However, their prompt detection is 

equally important as in some cases they might se-

riously impact the physicochemical and therapeutic 

properties of the pharmaceutical formulations. 

Such behavior was present in the binary mixture of 

ibuprofen and polysorbate 80 where changes in the 

FTIR spectra and DSC curves of the unstressed 

and stressed mixture can be observed. Moreover, 

the FTIR spectrum of the initial binary mixture is 

almost identical to the FTIR spectrum of the excip-

ient polysorbate 80 (Fig. 1d). Knowing that the 

binary mixture was prepared in 1:1 ratio, the un-

stressed mixture was in liquid state and therefore 

the appearance of the bands at 1733 cm–1 and 1094 

cm–1, originating from the polysorbate 80, is justi-

fied. However, the FTIR spectra of the stressed 

binary mixtures exhibit vibrational bands originat-

ing from both the API and the excipient, which is 

expected since the viscosity of polysorbate 80 

drops at higher temperature levels and thus the API 

tends to solubilize better in the liquid excipient.25 

This was accompanied by the broadening and sim-

ultaneous shifting of the endothermic peak to a 

lower temperature in the corresponding DSC curve 

of the unstressed mixture (Fig. 3d), which is justi-

fied, since the crystalline structure is also affected 

under these conditions.26 This broad melting peak 

is slightly shifted to higher temperatures, closer to 

the melting temperature of ibuprofen, in the DSC 

curves of the stressed binary mixtures. However, 

this is not expected to happen during the techno-

logical process, since the binary mixture in the pre-

formulation compatibility testing is prepared in 1:1 

ratio, which would not be the case in a real formu-

lation where polysorbate 80 is usually added in 

significantly lower concentrations.27 On the other 

hand, the absence of new vibrational bands of un-

known origin in the corresponding FTIR spectra of 

the binary mixture before and after exposure to 

stress conditions, confirms that the observed be-

havior of the DSC curve is solely a physical phe-

nomenon and thus no interaction is taking place. 

 

3.2. Multivariate data analysis 
 

3.2.1. Principal component analysis (PCA) 
 

3.2.1.1. PCA based on FTIR spectra 
 

The initial PCA was performed on fifty-
seven samples of stressed and unstressed ibuprofen 
in pure form and unstressed and stressed binary 
mixtures in order to test the possibility of separat-
ing and/or grouping the samples based on some 
mutual spectroscopic features observed in the 
FTIR spectra. The binary mixtures marked from 
BM1‒BM54, as in Table 1, were used for building 
the initial model. The optimal PCA model of the 
SNV-transformed FTIR spectra was built on 
twelve principal components explaining 96.0 % of 
the variation in the dataset, with satisfactory statis-
tical indicators (R2X = 0.960 and Q2 = 0.900). 
From the presented data (Fig. 4a), it can be ob-
served that the binary mixtures of ibuprofen and 
sodium hydrogen carbonate, prepared by wet gran-



Multivariate analysis for rapid screening and prediction of solid-state compatibility in pharmaceutical preformulation studies… 

Maced. J. Chem. Chem. Eng. 43 (1), xx–xx (2024) 

9 

ulation (BM52, BM53 and BM54) exhibit notable 
deviation from the general trend of the model. Ex-
pectedly, a similar deviation of the model trend can 

be observed in the binary mixtures of ibuprofen 
and magnesium stearate (ВМ28, ВМ29 and 
ВМ30). 

 

 

 
 

Fig. 4. a) Score scatter plot obtained from the PCA model for the FTIR spectra, color based on the type of interaction (green – BMs 

in which no interaction was detected; blue – BMs in which an interaction was detected) and corresponding loading plots for the  

b) first and c) second principal component 
 

 

3.2.1.2. PCA based on DSC curves 
 

PCA was performed on the DSC data ob-

tained for the same fifty-seven samples of stressed 

and unstressed ibuprofen in pure form and un-

stressed and stressed binary mixtures in order to 

test the possibility of separating the samples based 

on some mutual thermal features observed in the 

DSC curves. The optimal PCA model was built on 

ten principal components explaining 98.1 % of the 

variation in the dataset, with satisfactory statistical 

indicators (R2X = 0.981 and Q2 = 0.866). Based on 

the score scatter plot built on the full temperature 

range of the DSC curves (Fig. 5a), it can be ob-

served that the model groups the samples based on 

the type of interaction or other type of change, if 

present. Moreover, it can be observed that the bina-

ry mixtures of ibuprofen and sodium hydrogen 

carbonate prepared by wet granulation (BM52, 

BM53 and BM54) exhibit notable deviation from 

the general trend of the model, i.e., they are signif-

icantly distanced from the center of the model 

plane. Similarly, a deviation from the model trend 

is noticeable in the binary mixtures of ibuprofen 

and magnesium stearate, especially in the un-

stressed mixture (BM28) and the one stressed at 25 

°C/60 % RH (BM29). 

 

3.2.2. Partial least squares-discriminant analysis 

(PLS-DA) 
 

PLS-DA models were developed for both 

FTIR spectra and DSC curves of the stressed and 

unstressed ibuprofen in pure form and binary mix-

tures marked from BM1‒BM54, as in Table 1. The 

main criterion for classification of the samples 

within the model was the prior knowledge of the 

interactions and their type, from the experimental 

data. Therefore, all samples were classified into 

two classes. The binary mixtures in which no in-

teraction was detected were classified as Class 1, 

while Class 2 comprised the binary mixtures in 

which an interaction was detected. The final aim of 

such a designed model was to obtain a low-cost 

and rapid modulus for evaluation of compatibility 

between API and excipients, i.e., to obtain a model 

that would successfully predict interactions and 

classify other excipients that might be used in fu-
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ture formulations of ibuprofen. Furthermore, the 

prediction power of the optimal models was evalu-

ated in a separate data set using the RMSEP of Y 

variable (Class). In the context of PLS-DA, the Y 

variable is assigned a dummy variable ranging 

from 0 to 1, representing the two observed classes. 

Therefore, both, root mean square error of estima-

tion (RMSEE) and RMSEP are calculated as errors 

in predicting the Y (dummy variable) of the cali-

bration and prediction set, respectively. 
 
 

 
 

Fig. 5. a) Score scatter plot obtained with the PCA model for the DSC curves, color based on the type of the interaction (green – 

BMs in which no interaction was detected; blue – BMs in which an interaction was detected) and corresponding loading plots for the 

b) first and c) second principal component 
 
 

 
 

Fig. 6. a) Score scatter plot and b) VIP plot of the PLS-DA model for the fingerprint region of the FTIR spectra, color based on the 

type of the interaction (green – BMs in which no interaction was detected; blue – BMs in which an interaction was detected) 
 

 

3.2.2.1. PLS-DA based on FTIR spectra 

 

The initial PLS-DA model of the SNV-

transformed FTIR spectra was built on four PLS 

factors, characterized by satisfactory correlation 

factors (R2X = 0.815 and R2Y = 0.973) and predic-

tivity level (Q2 = 0.946). The fingerprint region 

was found to be the best choice for this type of 

analysis since it encompasses more features based 

on which the separation and classification can be 

done with better certainty and correlation. The 

score scatter plot (Fig. 6a) indicates that the sam-

ples are classified and separated based on the type 

of interaction, similar to the data obtained with 
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PCA. The variable importance of the projection, or 

the VIP plot (Fig. 6b), depicts the spectral regions 

which are directly affected by the stress conditions 

and are at the same time responsible for the vari-

ances in the model, such as changes in the vibra-

tional bands' intensity and position and appearance 

of new vibrational bands. 

 

3.2.2.2. PLS-DA based on DSC curves 
 

The PLS-DA model of the original DSC 

curves was built on four PLS factors, characterized 

by satisfactory correlation factors (R2X = 0.855 and 

R2Y = 0.889) and lower predictivity level (Q2 = 

0.799). This model behavior can be explained 

since the DSC curves exhibit very limited features 

such as the melting peak of ibuprofen, and eventu-

al water evaporation from absorbed moisture or 

crystalline water evaporation. The score scatter 

plot (Fig. 7a) indicates that the samples are classi-

fied and separated based on the type of interaction, 

similar to the data obtained with PCA. The VIP 

plot (Fig. 7b) clearly depicts the temperature re-

gions featuring these DSC events which are direct-

ly affected by the stress conditions and are consid-

ered as main variances responsible for the model 

behavior. 

 

 

 
Fig. 7. a) Score scatter plot and b) VIP plot of the PLS-DA model for the DSC curves, color based on the type of the interaction 

(green – BMs in which no interaction was detected; blue – BMs in which an interaction was detected) 
 

 

3.2.3. Testing of the predictive power of PLS-DA 

models 
 

Several additional binary mixtures were 

used as a separate training set to evaluate the pre-

dictive power of the optimized models to predict 

new interactions between API and other excipients 

that might be used in the future formulations of 

ibuprofen. The prediction training set consisted of 

the unstressed and stressed binary mixtures of ibu-

profen and sodium hydrogen carbonate, prepared 

by dry mixing (BM55, BM56 and BM57), as well 

as the binary mixtures of ibuprofen and polysorb-

ate 80 (BM58, BM59 and BM60). Since the inter-

action between ibuprofen and sodium hydrogen 

carbonate is moisture dependent, it occurs at more 

severe stress conditions (40 °C/75 % RH) when the 

mixture is prepared by dry mixing. On the other 

hand, the interaction does not occur in the un-

stressed mixture, while its exposure to milder 

stress conditions (25 °C/60 % RH) leads to some 

subtle changes in the FTIR spectra and DSC 

curves. This is an adequate choice for model test-

ing since it encompasses examples of both groups 

of mixtures – the ones in which interaction is de-

tected and the ones in which no interaction is de-

tected. On the other hand, the binary mixture with 

polysorbate 80 presents a case where no interaction 

is detected, but the observed changes are attributed 

to the excipient's properties resulting in some 

changes between the FTIR spectra of the un-

stressed and stressed mixtures, as well as physical 

changes in the DSC curves. The obtained results 

from the prediction set used for the evaluation of 

the predictive power of the models for FTIR and 

DSC data are presented in Figure 8. The obtained 

RMSEP was 0.10 and 0.16 for the optimal FTIR 

and DSC models, respectively, and the rate for cor-

rect prediction was 100 % for both models.
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Fig. 8. Observed versus predicted plot and the appropriate misclassification table for the prediction set of the a) FTIR spectra model 

and b) DSC curves model. The green and blue rectangles represent the boundary area for the appropriate class affiliation. 
 

 

3.2.4. Multivariate statistical analysis 
 

The results obtained with the applied statis-

tical models were in accordance with the described 

experimental data. Keeping in mind that the vibra-

tional bands in the FTIR spectra of the studied bi-

nary mixtures originate mainly from ibuprofen, 

their grouping is based on the bands exhibiting the 

same or similar wavenumbers, so any major devia-

tion from this trend would be unambiguously de-

tected. Similar approaches have been reported in 

the literature.28 According to this observation, if we 

look more thoroughly at the rest of the binary mix-

tures in the score scatter plot of the optimal PCA 

model built for the FTIR spectra (Fig. 4a) it can be 

seen that most of them are grouped together near 

the center of the model plane. These are the binary 

mixtures in which the main vibrational bands orig-

inate from ibuprofen and remain unchanged after 

exposure to stress conditions. On the other hand, 

minor subgroups can be perceived as well, placed 

on opposite sides of the plane. The one subgroup 

consists of the binary mixtures of ibuprofen and 

sodium citrate dihydrate (BM37, BM38 and 

BM39) and this observation can be attributed to the 

fact that this binary mixture exhibits some strong 

vibrational bands originating from the excipient 

along with those from the API. Conversely, the 

other subgroup consists of the binary mixtures of 

ibuprofen and colloidal, anhydrous silicon dioxide 

(BM1, BM2 and BM3) and this observation can be 

attributed to the fact that some of the most intense 

vibrational bands in this binary mixture are due to 

the excipient, not the API. This is expected consid-

ering that the excipient is a very light and bulky 

powder that prevents agglomeration by coating the 

API particles.29 However, these binary mixtures 

are part of the large group of mixtures in which no 

interaction was detected. Based on the correspond-

ing loading plots (Fig. 4b and 4c) it can be ob-

served that the first principal component classifies 

the samples according to the main changes in the 

FTIR spectra, i.e., the changes in the region of car-

bonyl and carboxylate vibrational mode, as well as 

the appearance of the previously discussed new 

bands. The second component classifies the sam-

ples according to the presence of some vibrational 

bands originating from some of the excipients, 

which might lead to observable changes in the cor-

responding FTIR spectra. Moreover, it can be con-

cluded that the changes accompanied by the ap-

pearance of new bands attributed to the formation 

of new entities have opposite values and are clearly 

separated from the ones that are attributed to phys-

ical changes manifested as changes in bands' inten-

sity or appearance of bands originating from the 
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excipients. This confirms the ability of the model 

to differentiate the interactions or changes based 

on their different origin. 

Similarly, the optimal PCA model built for 

the DSC curves groups the samples based on some 

mutual thermal features observed in the DSC 

curves.30 The corresponding loading plots (Fig. 5b 

and 5c) reveal that the model groups based on the 

main changes in the DSC curves, i.e., the changes in 

the melting peak of ibuprofen, such as its shift to-

wards higher temperature, as well as changes in its 

symmetry or enthalpy, was already discussed previ-

ously. Moreover, it can be observed that the first 

principal component classifies the samples accord-

ing to the shifting of the melting peak of ibuprofen 

towards higher temperature (Fig. 5b), while the sec-

ond principal component classifies the samples ac-

cording to the shifting of the melting peak of ibu-

profen towards lower temperature (Fig. 5c). 

The corresponding VIP plots from the PLS-

DA models reveal the main variances in the FTIR 

spectra and DSC events in the DSC curves at-

tributable to the API-excipient interactions. The 

VIP plot (Fig. 6b) for the PLS-DA model built for 

the FTIR spectra depicts the spectral regions which 

are directly affected by the stress conditions and 

are at the same time responsible for the variances 

in the model, such as changes in the vibrational 

bands' intensity and position and the appearance of 

new vibrational bands. The decrease of the intensi-

ty of the vibrational band at 1710 cm–1, as well as 

the appearance of new vibrational bands at 1475 

cm–1, 1406 cm–1, 1293 cm–1 and 1251 cm–1 in the 

binary mixture of ibuprofen and sodium hydrogen 

carbonate prepared by wet granulation (BM52, 

BM53, BM54), are assigned the highest VIP scores 

and are related to the new entity formation in the 

binary mixtures of ibuprofen and sodium hydrogen 

carbonate. In addition, the shift of the vibrational 

band at 1573 cm–1 in the binary mixture of ibu-

profen and magnesium stearate (BM28, BM29, 

BM30) and the appearance of new bands at 1635 

cm–1 and 1538 cm–1 are also associated with high 

VIP scores and can be related to the asymmetric 

and symmetric stretching vibrations of the carbox-

ylate mode. 

On the other hand, the characteristic melting 

peak of ibuprofen around 77 °C is associated with 

high VIP score in the corresponding VIP plot (Fig. 

7b) since it is the main DSC event in the DSC 

curves and it features all of the binary mixtures in 

which the same pattern is present, and thus no in-

teraction was detected. The high VIP score at 81 

°C is attributed to the loss of the ibuprofen melting 

peak and the appearance of a new endothermic 

process at ≈ 85 °C in the binary mixture of ibu-

profen and sodium hydrogen carbonate (BM52, 

BM53 and BM54), prepared by wet granulation. In 

addition, the appearance of a new endothermic 

peak at 58 °C in the unstressed binary mixture of 

ibuprofen and magnesium stearate (BM28) is given 

with a high VIP score as well and is likely related 

to the appearance of a new endothermic peak fea-

turing two simultaneous evaporating processes oc-

curring in previously discussed formation of the 

generated magnesium salt of ibuprofen. These data 

are in good correlation with the data obtained with 

PCA, and therefore it can quite satisfactorily pre-

dict deviations in larger data sets. 

The predictive power31 of the optimized 

models was further confirmed by testing a separate 

prediction training sets of binary mixtures for both 

models for FTIR and DSC. Based on the highest 

VIP scores explaining the main spectral variations 

and thermal events in the presented FTIR and DSC 

data, the model should predict if an interaction is 

occurring within a binary mixture and classify its 

type in the appropriate group or subgroup in the 

score scatter plot. The presented results for the 

prediction set of the FTIR spectra and DSC curve 

models clearly depict that the model can predict 

the interaction in the stressed binary mixture of 

ibuprofen and sodium hydrogen carbonate, pre-

pared by dry mixing (BM57), and therefore classi-

fy this mixture in the group of mixtures in which 

interactions were detected. On the other hand, un-

stressed binary mixture (BM55) and the one 

stressed at milder stress conditions (BM56) are 

classified in the group of mixtures in which no in-

teraction was detected. Similarly, the binary mix-

tures of ibuprofen and polysorbate 80 (BM58, 

BM59 and BM60) are also classified within this 

group. Furthermore, it can be confirmed that the 

classification of the mixtures used as a prediction 

set is in correlation with the above-described 

grouping and observations. 

 

4. CONCLUSION 

 

The applied solid-state techniques in combi-

nation with multivariate analysis were found to be 

appropriate for API-excipient compatibility studies 

and prediction of potential interactions. The statis-

tical models provided satisfactory statistical indica-

tors and have quite satisfactorily separated the ana-

lyzed binary mixtures based on the interaction 

type. As a result, the binary mixtures in which 

strong interactions were detected were successfully 

differentiated from the binary mixtures in which 

interactions were not detected. Furthermore, binary 
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mixtures in which minor physical changes were 

observed, were also detected, and well separated 

by the PCA models. The optimal PCA model was 

obtained for the fingerprint region of the FTIR 

spectra, explaining 96.0 % of the spectral variation 

in the dataset, with good statistical indicators (R2X 

= 0.960 and Q2 = 0.900), as well as the PCA model 

for the DSC curves (R2X = 0.981 and Q2 = 0.866). 

The applied PLS-DA models have shown similar 

behavior as the PCA models, resulting in similar 

classification of the binary mixtures. In addition, 

the main spectral variations in the FTIR spectra, as 

well as the main thermal events in the DSC data 

were associated with the highest VIP scores in the 

corresponding VIP plots, confirming the model 

ability for predicting interactions. Furthermore, the 

predictive power of both PLS-DA models for FTIR 

spectra and DSC curves were evaluated and con-

firmed by the RMSEP value. The obtained RMSEP 

for the prediction set were 0.10 and 0.16 for the 

FTIR spectra model and DSC curve model, respec-

tively, which demonstrates the capability of the 

optimized models for monitoring API-excipient 

compatibility during the preformulation testing. 

Based on PCA and PLS-DA results, it can be con-

firmed that multivariate analysis combined with 

FTIR spectroscopy and DSC analysis has great 

potential for compatibility studying and predicting 

of potential API-excipient interactions during 

pharmaceutical development. This is solid proof 

that machine learning is a powerful tool which can 

be further used for more detailed screening of API-

excipient relations. Moreover, the continued adop-

tion of AI and ML, beside the cost benefit, will 

unquestionably pave the future of the pharmaceuti-

cal industry, leading to even greater efficiency and 

productivity, faster product launch and increased 

chances of success in all areas of pharmaceutical 

development. 
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