
 
 

Macedonian Journal of Chemistry and Chemical Engineering, Vol. 33, No. 1, pp. 65–71 (2014) 

 

MJCCA9 – 638 ISSN 1857-5552 

Received: November 20, 2013 UDC: 543.545.2:[606:616.831.9-008.83 
Accepted: February 5, 2014 Original scientific paper 

 
 

 

 

 

OPTIMIZATION OF SUPERVISED SELF-ORGANIZING MAPS WITH GENETIC 

ALGORITHMS FOR CLASSIFICATION ELECTROPHORETIC PROFILES 
 

 

Natalija Tomovska, Igor Kuzmanovski, Kiro Stojanoski* 
 

Institute of Chemistry, Faculty of Natural Sciences and Mathematics,  

Ss. Cyril and Methodius University, Skopje, Republic of Macedonia 

 
Standard electrophoresis methods were used to classify analyzed proteins in cerebrospinal fluid 

from patients with multiple sclerosis. Disc electrophoresis was carried out on polyacrylamide gels for the 

detection of oligoclonal IgG bands in cerebrospinal fluid, mainly from patients with multiple sclerosis and 

other central nervous system dysfunctions. ImageMaster 1D Elite and Gel-Pro specialized software pack-

ages were used for fast accurate image and gel analysis. The classification model was based on supervised 

self-organizing maps. In order to perform modeling in an automated manner, genetic algorithms were 

used. Using this approach and a data set composed of 69 samples, we developed models based on super-

vised self-organizing maps which were able to correctly classify 83% of the samples in the data set used 

for external validation. 
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ОПТИМИЗАЦИЈА НА САМООРГАНИЗИРАНИ МАПИ ТРЕНИРАНИ СО НАДГЛЕДУВАНО УЧЕЊЕ 

СО ГЕНЕТСКИ АЛГОРИТМИ ЗА КЛАСИФИКАЦИЈА НА ЕЛЕКТРОФОРЕТСКИ ПРОФИЛИ 
 

Стандардна електрофоретска метода беше користена за анализа на протеините во церебро-

спиналниот ликвор кај пациенти претежно со мултипла склероза, но и со други заболувања на 

централниот нервен систем, со намера да се изврши класификација на експерименталните резул-

тати. За оваа намена беше користена диск-електрофорезата за детекција на олигоклонални IgG 

ленти во електрофореграмите добиени со гел-електрофореза. Анализата на електрофореграмите 

беше направена со специјализираниот софтвер ImageMaster 1D Elite и софтверскиот пакет GelPro. 

За класификација на добиените експериментални резултати беа користени самоорганизирани мапи 

тренирани со надгледувано учење. За да се автоматизира моделирањето, беше користен генет-

скиот алгоритам. Користејќи го овој пристап и податоците од 69 примероци за анализа, добивме 

модели базирани на самоорганизирани мапи, со кои може коректно да се класифицираат 83 % од 

податоците користени за екстерна валидација. 
 

Клучни зборови: диск-електрофореза; церебрален флуид; анализа на протеини;  

самоорганизирани мапи тренирани со надгледувано учење 

 

 

1. INTRODUCTION 
 

Quantitative and qualitative analysis and the 

determination of different types of proteins, other 
biomolecules and their profiles play an increasing 

role in medical diagnosis. Standard electrophoresis 

methods and many emerging approaches such as 

lab-on-a-chip methods are well known for protein 
detection and analysis of cerebrospinal fluid (CSF) 

[1–5]. Proteomics technologies have been widely 
used in the investigation of neurodegenerative and 

psychiatric disorders. 2-D electrophoresis followed 

by mass spectrometry has been mainly applied, as 
this proteomics approach provides the possibility 

of convenient quantification of protein levels and 

detection of post-translational modifications. Many 

proteins with disrupted levels and modifications 
have been detected by proteomics approaches and 
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related to neurodegeneration and psychiatric dis-

orders [6]. However, cerebrospinal fluid analysis, 

coupled with other methods, remains the basis of 

the diagnosis of various neurological disorders, 
including multiple sclerosis and infectious diseases 

of the central nervous system (CNS) [3, 7]. 

In the routine procedure, electropherograms 

are classified into different groups according to the 

qualitative and quantitative composition of cere-

brospinal fluid with regard to major protein frac-

tions and the CSF/serum albumin quotient, coupled 

with McDonald diagnostic criteria [3]. In addition, 

for the detection of oligoclonal IgG bands in serum 

and in unconcentrated spinal fluid, some tech-

niques have been used, such as the isoelectric fo-

cusing combined with polyethylene-enhanced gel 

immunofixation and silver staining, CSF/serum 

quotient diagrams, different body indices, etc. [7–9].  

In addition, the automation and development 
of software has enabled the fast collection of huge 

amounts of electrophoretic data [10]. Image analy-
sis software is used to extract much more informa-

tion from the electropherogram for comparative 
analysis between gels generated in-house or avail-

able in web-based databases. Data acquisition, ma-
nipulation and computation for electrophoretic pro-

tein pattern recognition are performed using stan-
dard statistical signal analysis. Cluster analysis, 

along with other statistical methods such as prin-
cipal component analysis (PCA), artificial neural 

networks (ANN) and fuzzy logic [10, 11] have 
been used in various areas of medicine.  

Our previous results obtained using hierar-

chical cluster analysis, despite considerable simi-
larities between electropherograms, have shown 

that different clustering approaches produced dif-

ferent dendrograms, and it was concluded that 

cluster analysis should be used cautiously [5]. Hav-

ing the disadvantages of these methods in mind, here 

we decided to use self-organizing maps (SOM). This 

algorithm has become a valuable tool for data 

analysis purposes [12–22]. The most commonly 

used SOM algorithm is for clustering multidimen-

sional data [12–19] and for process/reaction moni-

toring [22, 23], but also as a tool for variable selec-

tion [24]. The theoretical background of self-orga-
nizing maps [24] and their applications in chemi-

stry are described in detail in the literature [25–26]. 

A variant of the SOM algorithm, called supervised 

self-organizing maps [24], has not been widely used 

in chemometrics. However, keeping in mind the fact 

that this version of the algorithm is suitable for clas-

sification purposes, we have used it for successfully 

developing classification models for different pur-

poses [27, 28]. 

In this paper, we describe our efforts to de-
velop classification models based on supervised 

self-organizing maps [24] in order to determine (1) 
whether the patients have multiple sclerosis or (2) 
other central nervous system dysfunctions (like po-
lyradiculoneuritis, known as Guillain-Barré syn-
drome, encephalitis and paraproteinemia) or (3) 
whether the findings belong to patients without any 
disorder of the central nervous system. 
 
 

2. EXPERIMENTAL 
 

The electrophoregrams used here were ana-
lyzed in our previous work and the experimental 
details are described there [4, 5]. In addition to the 
results from 32 patients diagnosed with multiple 
sclerosis, we used the data from an additional 23 
patients. The majority of these patients had a histo-

ry of psychiatric disorders (polyradiculoneuritis, 
paraproteinemia and encephalitis) and no symp-
toms or signs of neurological disease, as shown by 
magnetic resonance imaging and electrophysiolog-
ical investigations and routine biochemical analys-
es. Also, electrophoregrams were obtained from a 
control group of 14 healthy patients. Clinical in-
vestigations were performed according to the Reg-
ulations of the Macedonian Ethical Committee and 
the Ministry of Health of the Republic of Macedonia. 
 

2.1. Disc electrophoresis 
 

Disc electrophoresis was carried out on 7% 
polyacrylamide gels, using the Canalco (USA) elec-
trophoresis system. CSF was used without precon-
centration. Proteins were separated on polyacryla-
mide gels polymerized in glass tubes, approximately 
5 mm in diameter and 15 cm in length. The experi-
mental details are described by Spiroski et al. [5]. 
 
 

3. DATA PREPARATION AND MODELING 
 

The collected data were digitized using Im-
ageMaster 1D Elite and Gel-Pro software [29]. In 
all electropherograms, the dominant peak was that 
of albumin (Figure 1). In the preliminary data 
analysis, we noticed that using the entire electro-
pherograms was not a good option because the al-
bumin peak reduces the importance of the smaller 
peaks which bear in them the information we chose 
to model. Having this in mind, we removed the 
albumin peak from all electropherograms. As a 
result, the total number of data points was reduced 
from 450 to 270 in each of the electropherograms. 

In the next step, the remaining part of the electro-
pherogram was normalized and further autoscaled. 
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Fig. 1. Electrophoregrams of CSF from:  
a) N – control subject, b) PRN – polyradiculoneuritis,  
c) MS – multiple sclerosis, d) PP – paraproteinemia,  

and e) E – encephalitis 
 

 

3.1. Supervised self-organizing maps 
 

Self-organizing maps have been developed 
as an algorithm for unsupervised learning. Howev-
er, in cases where poor class separation is obtained, 
a modified version for supervised classification can 
be used. A slight modification of the algorithm can 
transform SOMs into a tool for supervised classifi-
cation [24]. Namely, SOMs can be transformed 
into an algorithm for supervised classification if 
the input vectors for the training samples (ds) are 
augmented by a unit vector du (Figure 2a) with its 

components assigned into one of the four classes 
present in the training set. During the phase of pre-
diction, the part of the weight vectors of SOM that 
correspond to the unit vector is excluded (Figure 
2b). In other words, for each sample in the training 
set ds, the corresponding du must be used during 
training while during the recognition of an un-
known sample x, only the xs part is compared with 
the corresponding part of the weight vectors of the 
trained SOM. 

It is also important to mention that, in this 
work, instead of using autoscaled electrophero-

grams for training the supervised SOMs, we used 
principal components extracted from the norma-

lized and autoscaled electropherograms. The ad-
vantage of this approach is that PCA is able to ex-
tract most of the information (stored in the prepro-
cessed data matrix composed of 270 data points) 
into a vector (principal component) composed of 
only a few data points. 

 

 
 
Fig. 2. Supervised SOM setup for classification of data set with 
four different classes. a) The training set vectors are augmented 
with the unit vector. The unit vector in this case has a length of 
three. Correspondingly, the number of additional weight levels 
of the supervised SOM which correspond to the unit vector is 
also four. b) After the training of the supervised SOM has fin-
ished, the developed model can be used (without the weight 

levels that correspond to the unit vector) for the classification of 

additional samples (test vectors) 
 
 

In addition to this, the advantage of using 

autoscaling prior to extracting principal compo-

nents is that it gives more importance to the signals 

which do not dominate the electropherograms [30]. 

However, the disadvantage of the same procedure 

is that it gives equal importance to the regions of 

the electropherograms which bear in themselves 

valuable information for the classification of our 

samples with those regions which are noisy or do 

not have any valuable information which could 

help in the correct classification of our samples 

[30]. In order to extract the data points in our elec-

tropherograms which are the most suitable for 

classification purposes, we used the genetic algo-

rithm (GA) prior to extracting the principal com-

ponents. 
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3.2. Genetic algorithm 
 

In order to perform optimization of the su-
pervised SOMs in an automated manner, but also 
to minimize the role of the analyst, the GA was 
used [31–33]. It has been shown that this algorithm 

is an effective tool for solving different optimiza-
tion problems in chemistry [27, 28, 34–38]. GA is 
capable of performing relatively fast convergence 
toward a global minimum of the optimized func-
tion without the need to run every possible permu-
tation of the optimized parameters [31–33]. 

Most commonly, GA is used for variable se-
lection [31–33], but in our laboratory we use it not 
only for this purpose, but also for the determina-
tion of other important parameters which could 
influence the performance of the developed model 
[27, 28]. 

 
 

4. RESULTS AND DISCUSSION 
 

As previously stated, in order to perform the 
optimization of the supervised SOMs in an auto-

mated manner, we used the GA. For these purpos-

es, the search for the best possible model was per-
formed on a population consisting of 100 chromo-

somes. The chromosomes were encoded, as pre-

sented in Figure 3. To find the width of the super-

vised SOM, three genes were used (in the interval 
4–11 neurons). An additional three genes were 

used to adjust the length of the supervised SOM (in 

the interval 4–11 neurons); four genes were used to 
find the most suitable number of epochs in the 

rough training phase (in the interval: 10–25 neu-

rons). Seven genes were used to adjust the number 

of training epochs in the fine training phase (the 

obtained number in the interval between 1 and 128 

was increased by double the number of epochs in 

the rough training phase, in order to ensure that the 
number of epochs in this phase is larger than the 

one in the previous training phase). An additional 

270 genes were used to select variables from elec-
tropherograms (normalized and autoscaled) and, at 

the end, four more genes were used to select the 

number of principal components, which was calcu-
lated from the preselected data points. 

Initialization of the weights of the super-

vised SOMs was performed along the first two 
principal components obtained from the training 

data set. During training, we used the Gaussian 
neighborhood function and a linearly decreasing 

learning rate. The entire optimization using GA 
lasted 450 generations and, as previously stated, 

we used a population composed of 100 chromo-
somes. During optimization 20% of the chromo-

somes with the best performance were used as par-
ents for the creation of the offspring chromosomes 

(80% of the population) for the following genera-
tion. Mating pairs were formed from the best (20%) 

chromosomes for formation of the new population 
using the roulette wheel selection rule [34]. 

In order to avoid fast convergence in a small 

area of the search, a mutation was applied during 
the optimization. Until generation 50, the probabil-

ity of the occurrence of a mutation in the offspring 

chromosome was kept at 0.10. After that, until 
generation 150, the probability for the occurrence 

of a mutation linearly decreased down to 0.05. 

From there on, until the end of GA optimization, 
mutation was kept at the same level. 

 

 

 
Fig. 3. Encoding the chromosomes used during the search for the best model performed using the genetic algorithm 
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The developed classification models were 

validated using both internal and external valida-

tion. Internal validation was performed during GA 

optimization using the cross-validation-leave-10%-
out procedure with the training data set (composed 

of 52 samples). After the search for the best model 

ended, we used the test set for external validation 

of the best model. The test set was composed of 17 

samples from the original data set. Prior to starting 

optimization (using GA), the data set was divided 

into the training set and the test set using the Ken-

nard-Stone algorithm [39]. Some of the best mod-
els, the size of the SOM, the training epochs as 

well as the number of misclassified samples for 

these models are presented in Table 1. 

 
 

T a b l e 1 
 

Parameters for some of the best models obtained using genetic algorithms 
 

Model 
No. of 
PCs 

Training 
set errors 

Cross-
validation 

error 

Test set 
errors 

Size of the SOM Training epochs 

Width Length 
Rough 
phase 

Fine 
phase 

1 8 1 1 3 7 8 19 54 

2 8 0 2 4 7 8 19 59 

3 8 0 2 5 7 8 10 42 

 

 

In the remaining part of this discussion, we 
will analyze model number 1 in more detail (Table 

1). The trained supervised SOM for this model (in 
which different areas are properly labeled) is pre-

sented on Figure 4. One can notice here that the 
upper left corner of the supervised SOM is capable 

of recognizing samples from the healthy patients 
with normal protein status in the CSF. The central 

part of the supervised SOM is capable of recogniz-
ing the samples collected from patients with mul-

tiple sclerosis, while in the right part of the map, 
the samples from the remaining patients are 

grouped. Figure 5 also corresponds to model 1 
(from Table 1). In this case (in Figure 5), SOM 

was labeled according to the results obtained using 
the training set. Here, we noticed that the only 

misclassified sample belongs to the broad class of 
samples, which were added to the data set in order 

to develop a more robust model. Without these 
additional 23 samples, our models would have 

been able to classify into only two classes (healthy 
individuals and patients with multiple sclerosis). If 

the model was developed using only these two 
types of samples, and if it had been used for the 

classification of additional samples (which do not 
belong to these two classes), it could have been 

“forced” to be mapped into a part which is capable 
of recognizing two classes of samples (in this hy-

potetical case, samples from healty patients and 
samples from patients with multiple sclerosis). So, 

having this explanation in mind, together with the 
fact that we had a relatively small number of sam-

ples in our data set, the additional 23 samples from 
the patients with three additional diagnoses were 

considered as a third class. So, we assume that the 
samples from this third class are misclassified be-

cause of the small number of samples with differ-
ent diagnoses (polyradiculoneuritis, paraproteine-

mia and encephalitis) in it. 

In Figure 6, we show the map that corres-

ponds to the discussed model, but this time it is 

labeled with the labels from the samples which are 

part of the test set (used for external validation). In 

total, three samples from the test set were misclas-

sified by this model. None of the misclassified 

samples belongs to a patient who was diagnosed 

with multiple sclerosis. (This is also the case with 

the other two models presented in Table 1.) In our 

oppinion, this is due to the fact that almost half of 

the samples belong to patients with multiple scle-

rosis, so the discussed model is capable of correct-

ly classifying all samples of this type, not only the 

samples from the training set, i.e. the samples 

which are part of the test set. Two of the three mis-

classified samples for this model belong to healty 

patients, while the third sample is a sample from a 

patient with another psychological disorder. 

In our opinion, the generalization perfor-

mance of the developed models based on super-

vised SOM could be further improved if the data 

set were to be expanded with aditional experimen-

tal data. The number of misclassified samples from 

healthy patients, as well as from patients with psy-

chological disorders, would be further reduced if 

the number of samples was at least comparable 

with the number of samples collected from patients 

with multiple sclerosis. 
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Fig. 4. Trained supervised SOM for model 1 (Table 1) labeled 
with the different types of classes  

(n – healthy patients, ms – patients with multiple sclerosis,  
r – patients with other psychiatric disorders) 

 
 

 
 

Fig. 5. Training samples with their labels mapped  
on the supervised SOM 

 

 

 
 

Fig. 6. Test samples with their labels mapped  
on the supervised SOM 

 

5. CONCLUSIONS 
 

We have shown that models based on super-

vised self-organizing maps coupled with genetic 
algorithms for the classification electrophoretic 

profiles is an attractive approach for automated 

diagnostics on samples from patients with multiple 

sclerosis. The results of our modeling show that it 
is possible to develop a model which can success-

fully classify samples from patients with multiple 

sclerosis. However, during the phase of external 
validation, for all three models examined in this 

work, we observed misclassifications of samples 

taken from healthy patients and from patients with 
other psychological disorders (not multiple sclero-

sis). We believe that, in future, the research on this 

subject in our laboratory will continue. With a larger 

number of samples, we will be able to present more 
detailed results from models which will be able to 

successfully recognize not only samples from pa-

tients with multiple sclerosis, but also samples from 
patients with other psychological disorders. 
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