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The microstructural parameters of a crystalline sample can be determined by a proper analysis of 

XRD line profile broadening. The observed XRD line profile, h(ε), is the convolution of the instrumental 

profile, g(ε), and pure diffraction profile, f(ε), caused by small crystallite (coherent domain) sizes, by 

faultings in the sequence of the crystal lattice planes, and by the strains in the crystallites. Similarly, f(ε) is 

the convolution of the crystallite size/faulting profile, p(ε), and the strain profile, s(ε). The derivation of 

f(ε) can be performed from h(ε) and g(ε) by the Fourier transform method, which does not require mathe-

matical assumptions. The analysis of f(ε) can be done by the Warren-Averbach method applied to the ob-

tained Fourier coefficients. Simplified methods based on integral widths may also be used in studies 

where a good relative accuracy suffices. The relation among integral widths of f(ε), p(ε) and s(ε) can be 

obtained if one assumes bell-shaped functions for p(ε) and s(ε). Integral width methods overestimate both 

strain and crystallite size parameters in comparison to the Warren-Averbach method. The crystallite size 

parameter is more dependent on the accuracy in the diffraction profile measurement, than it is the strain 

parameter. The precautions necessary for minimization of errors are suggested through examples. The 

crystallite size and strain parameters obtained by means of integral widths are compared with those which 

follow from the Warren-Averbach method. Recent approaches in derivation of microstructure are also 

mentioned in short. 

 

Keywords: X-ray diffraction broadening; crystallite size and strain; deconvolution; integral width;  

Warren-Averbach method  

 
 

АНАЛИЗА НА ШИРОЧИНАТА НА РЕНДГЕНСКИТЕ ДИФРАКЦИОНИ МАКСИМУМИ 

 
Микроструктурните параметри на кристален примерок можат да се определат со помош на 

соодветна анализа на проширувањето на профилите од рендгенската дифракција. Регистрираниот 

дифракционен профил, h(ε), е конволуција на инструменталниот профил, g(ε), и чистиот 

дифракционен профил, f(ε), предизвикан од малите кристалитни димензии (кохерентен домеин), 

потоа од несовршеностите во секвенциите од рамнините на кристалната решетка и од напрегањата 

во кристалитите. Слично, f(ε) е конволуција на кристалитниот големина/несовршеност профил, 

p(ε), и профилот на напрегнатост, s(ε). Одредувањето на f(ε) може да се изврши од h(ε) и g(ε) со 

помош на методот на Фуриеова трансформација, којашто не бара математички претпоставки. 

Анализата на f(ε) може да се изведе со помош на методот на Warren-Averbach применета на 

добиените Фуриеови коефициенти. Упростените методи засновани на интегралните широчини на 

профилите можат, исто така, да се користат и при студии каде што се достигнати релативно добри 

согласности. Зависноста помеѓу интегралните широчини на f(ε), p(ε) и s(ε) може да се добие ако се 

претпостават ѕвоновидни функции за p(ε) и s(ε). Во споредба со методот на Warren-Averbach, 

методот на интегрална широчина ги преценува параметрите на напрегнатоста и на кристалитната 

големина. Параметарот на кристалитната големина е позависен од точноста на мерењето на 

дифракциониот профил во споредба со параметарот на напрегнатоста. Сугерирани се, низ 

примери, неопходните претпазливости за минимизирање на грешките. Параметрите на 
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кристалитната големина и на напрегнатоста добиени со помош на интегралната широчина се 

споредени со оние добиени со методот на Warren-Averbach. Накусо се наведени и неодамнешните 

сознанија во врска со определувањето на микроструктурата.  

 

Клучни зборови: широчина на рендгенските дифракциони максимуми; кристалитна големина и 

напрегнатост; деконволуција; интегрална широчина; метода на Warren-Averbach 

 

 

1. INTRODUCTION 

 

Microstructural parameters of a given mate-

rial, crystallite size, distribution of sizes, crystallite 

strain and stacking faults, can be determined by X-

ray diffraction methods, in combination with other 

techniques, especially electron microscopy and dif-

fraction. All information on microstructure is con-

tained in its diffraction pattern and can be inferred 

by a proper decoding and interpretation of the pat-

tern. As the crystallite size decreases below, say, 

100 to 200 nm, and/or with the presence of strains, 

diffraction line profiles become measurably broad-

er than the instrumental profile. The high angle dif-

fraction lines are affected first, and the K12 

spectral components eventually cease to be re-

solved. For the crystallite size of, say, 10 nm, high 

angle diffraction lines become very broad and dif-

fuse and may disappear, depending also on the 

fraction of strains. Low angle diffraction lines also 

become broad. The derivation of microstructure 

depends strongly on the accuracy of the X-ray 

diffraction line profile measurement and on the 

minimization of errors inherent in the measure-

ment, e.g. [1]. 

The crystallite size derived from diffraction 

pattern is a measure of the average thickness (in 

direction normal to diffracting crystal planes) of 

domains within which diffraction is coherent. This 

size does not necessarily correspond to the size of 

individual particles in a powder or grains in a poly-

crystal. Particles can be the single crystals, but 

each particle or grain may contain several dif-

fracting domains. Therefore, it is very useful to 

combine X-ray diffraction with other techniques, 

such as transmission and scanning electron micros-

copy. 

If a metal or a ductile material is deformed 

by cold work or other (thermal) treatment, its dif-

fraction lines broaden, indicating that a disorder is 

introduced into the material. The nature of these 

changes may be [2]: 

– the initial crystal grains are broken up into 

small crystallites (coherently diffracting domains) 

of the size up to, say, 100 to 200 nm; 

– the crystallites remain large, say 1 m in 

size or bigger, but they are deformed, or suffer 

some kind of faultings, or undergo both effects; 

– the material consists of small (even na-

nosized) crystallites, which are deformed and/or 

possess stacking faults, all these effects contrib-

uting to the broadening of diffraction lines.  

The cold work produces arrays of disloca-

tions, which have the effect to subdivide the grains 

into much smaller crystallites, which are also re-

ferred to as domains in literature. The domains 

may be mutually sufficiently disoriented that each 

domain diffracts incoherently with respect to oth-

er/neighbouring domains. The dislocations also 

produce tensile and compressive strains within the 

crystallites.  

The first step before any attempt to analyze 

diffraction line broadening is to correct the ob-

served (broadened) X-ray diffraction line profile of 

the studied sample for instrumental effects. A care-

ful scan of a suitable standard sample, showing a 

negligible physical broadening will define the in-

strumental contribution to broadening. Details for 

standard specimen preparation are given in the 

literature, e.g. [3]. The most desirable approach in 

order to obtain the instrumental profiles is to an-

neal the sample showing broadened diffraction 

lines. Namely, the centroids of the observed profile 

of the studied sample, h(ε), and of the instrumental 

profile, g(ε), should be as close as possible. How-

ever, the annealed studied sample does not always 

give satisfactorily narrow diffraction lines; in that 

case the application of a suitable certified standard 

reference material is recommended. Detailed pro-

cedures for derivation of microstructural parame-

ters are given in e.g. [4]. 

 

2. DECONVOLUTION 
 

The observed X-ray diffraction line profile, 

h(), is the convolution of the instrumental profile, 

g(), and pure diffraction profile, f() [5, 2]: 

 



h    f t g   t dt  
.  (1) 
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The variable ε measures the angular devia-

tion of a point from the true Bragg angle 2Θ0; ε 

and the auxiliary variable t have the dimension of 

2Θ. 

Similarly to (1), f() is the convolution of the 

crystallite size/faulting profile, p(), and the strain 

profile, s(): 
 



f    p t s   t dt .  (2) 

 

The derivation of f() from (1) can be per-

formed from the measured h() and g() by the 

Fourier transform method, usually cited as the 

Stokes method [6], where no assumption in the 

mathematical description of h() and g() is neces-

sary [5]. A valuable feature of the Stokes method is 

that the broadening of the diffraction profiles due 

to the angular separation of the K12 spectral 

components is automatically allowed for. 

The analysis of line broadening is based on 

the appropriate analysis of f(ε) in terms of crystal-

lite size/faulting  and strain parameters. Profile 

functions can be defined in the complex form as to 

be applicable to asymmetrical profiles:  
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The profiles are defined in the angular inter-

val from 2Θ-M to 2Θ+M [–M , M].  The interval 

should be chosen wide enough that beyond it the 

intensity of h(ε) and g(ε) can be considered to 

have fallen to the background level. 

The Fourier coefficients of two measured 

profiles, of the studied sample, h(ε), and of the 

standard sample, g(ε), are given by summations: 
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It follows from the Fourier integral theorem 

that the real and imaginary Fourier coefficients of 

pure physical diffraction profile f(ε) are given by 

equations: 

 

 
       
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F(t) = [F
2
re (t) + F

2
im (t) ]

1/2
 . 

 

Hre (t), Him (t), Gre (t) and Gim (t) are the coefficients 

of h() and g(), respectively. The profile f (ε) can 

be synthesized as  
 

       f () = Fre (0) + 2 Σ
 
[Fre (t) cos(t/M) +     

  Fim (t) sin(t/M)],  (3) 

 

the summation being performed from t = 1 to t ',  

and t ' is that value of t for which 

 

Fre (t > t ')  and  Fim (t > t ') 

 

have fallen practically to zero. 

It is important to choose the adequate back-

ground level of the measured profile. There is a 

tendency to estimate the background level too 

high, due to overlapping of the adjacent diffraction 

lines and also due to the fact that for small crystal-

lite size the tails of the diffraction line are rather 

long. The consequence is the so-called hook effect 

in the dependence of F(t) on t: the obtained value 

of F(0) is smaller than it should be. This can be 

avoided by choosing the background level of the 

studied sample to be equal to that of the annealed, 

standard, sample. 

If the physical broadening is small compared 

to the instrumental broadening, the deconvolution 

may become rather unstable. If h() is only, say, 

20% broader than g(), that gives an upper limit of 

about 100 to 200 nm for the determination of the 

crystallite size. 

Experimental errors in the measurement of 

h() and g(), the finite angular interval in which 

the profiles are measured and the truncation of 

their tails may produce oscillations (ripples) of the 

derived ordinates of  f(ε) at high values of ε in (3). 
 

3. WARREN-AVERBACH METHOD 
 

The analysis of f() is usually performed by 

the Warren-Averbach method through the Fourier 
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coefficients obtained by deconvolution [5,6,7]. 

Namely, each coefficient is the product of the crys-

tallite size/faulting parameter and the strain pa-

rameter, the latter depending on the order of dif-

fraction maximum: 
 

     F(t) = Fcf (t)·Fs(t,hkl).  (4) 

 

That fact makes it possible to separate crys-

tallite size/faulting parameter from the strain pa-

rameter for small (several initial) values of t, by 

using two or more diffraction orders for  the same 

set of crystal lattice planes (eg. hkl, 2h 2k 2l, 3h 3k 

3l). The order t of the coefficients can be trans-

formed into the order L according to the relation  

 

 0

,
4 sin sinM

t
L



 





 

 

where L is the distance normal to the diffracting 

planes (hkl), having the interplanar spacing dhkl ,  

being the wavelength of X-rays. For small values 

of L the following approximation is valid: 
 

ln F(L,hkl) = ln Fcf (L) – 2
2
L

2
e

2
LWA /(dhkl)

2
     (5) 

 

The analysis, according to (4) and (5), pro-

vides in principle information on the (surface-

weighted) crystallite size, LWA, distribution of 

sizes, deformation-twin faulting and the (averaged 

mean squared) strain over a distance L normal to 

diffracting crystal lattice planes. A series of plots 

of ln F(L,hkl) versus 1/(dhkl)
2
 are constructed for 

different values of L. For a given value of L the 

intercept on the ordinate axis gives the size/faulting 

coefficient, Fcf (L), while the slope gives the mean 

squared strain, e
2
LWA. The (negative) initial slope 

of the plot of Fcf (L) versus L, i.e., the first deriva-

tive of the plot at L = 0, is connected with the mi-

crostructural parameters: 
 

        – dFcf (L)/dL = 1/LWA + 1/LfWA .       (6) 

 

LWA is the crystallite size, as defined by the 

Warren-Averbach method, in the direction normal 

to the diffracting planes, whereas LfWA is the con-

tribution due to faultings on crystal lattice planes. 

In case that contribution due to faultings is small, 

the intercept of the initial slope of Fc(L) (subscript 

f omitted) versus L with the abscisa axis equals 

LWA. For a strain free sample, the analogous in-

tercept on the abscisa axis of the plot F(L,hkl) ver-

sus L yields directly LWA in direction normal to 

the diffracting planes. The crystallite size distribu-

tion is given by the second derivative, d
2
Fc (L)/dL

2
. 

The second derivative cannot be negative, as the 

crystallite size distribution is positive. It follows 

that the plot of Fc(L) versus L should be concave 

upward, but never downward. If it happens that the 

plot is concave downward, i.e. the hook effect is 

present, this is an indication that the coefficient 

F(0) is smaller than it should be. Since F(0) is 

proportional to the area of the profile  f(), the 

reason for the  hook effect may be the overestima-

tion of the background level. 

Contribution due to faultings in (6) may ap-

pear for a material which can be regarded structur-

ally to be composed of well-defined layers. The 

faultings are random crystallographic misplace-

ments of successive layers, i.e. random deviations 

from the correct sequence of layers (crystal lattice 

planes) according to requirements of the space 

group. The faultings may occur as a result of cold 

work (deformation fault) or crystal growth (twin 

fault). Not all diffraction lines are broadened or 

similarly broadened by the presence of faultings. A 

detailed description of the derivation of the fault-

ing probability and the nature of faultings are given 

in e.g. [5]. 

 
4. INTEGRAL WIDTH METHOD 

 

On the other hand, simplified methods, 

which are based on the integral width, i, or full-

width at half maximum, 1/2 (FWHM), of f(), may 

be used in studies where a relative accuracy suf-

fices. Simple procedures for derivation of the 

width i from the measured widths Bi and bi  of  

h() and g(), resp., can be found in e.g. [2]. These 

procedures are based on the following equation 

which can be derived from (1): 

   

                     Bi  = bi i / ∫ g() f() d 


Similarly, the integral widths i, pi and si 

off(),p() and s(), resp., are connected by the 

equation 



i  = pi si  / ∫ p() s() d 
 

In order to obtain the relation among the 

widths of h(), g() and f(), or among the widths 

of f(), p() and s(), one may assume bell-shaped 

functions for g() and f() in (7), or for p() and 

s() in (8). These assumptions, of course, affect the 

relations among the integral widths in question.  

The bell-shaped functions, usually used in the 

analysis of powder diffraction pattern, in the indi-

vidual profile fitting, in the application of the 
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Rietveld refinement and in the crystal structure 

analysis, are:  

– Cauchy (Lorentzian) function,    
1

2 21 CC K 


  , 

in literature used for p() in case of a wide crystal-

lite size distribution; 

– modified Cauchy function,    
2

2 21 QQ K 


  , 

used for s(); 

– Gauss function,    2 2exp GG K   , used for s(); 

–      
22sin S SS K K   , used for p() in case of 

a narrow crystallite size distribution; 

– Voigt function, V(), used for both p() and s() 
[8] ; 

– pseudo Voigt function,        1pV C G       , 



0  1 [9]. 

The Voigt function, a convolution of the 

Cauchy and Gaussian functions, appears to be a 

better choice in description of both size and strain 

profiles [8, 10, 11]. The derived (volume-

weighted) crystallite size parameter, Lhkl, and the 

(upper limit of) strain parameter, ehkl, depend on 

assumptions for p() and s(), e.g. [12, 8, 13].   

For instance, if p() is described by the Cau-

chy function and s() by the Gauss function, the 

following approximate relation, derived from (8), 

can be used [14, 15]: 
 

                



i
2  ipi  si

2
.   (9) 

 

By using the well-known Scherrer equation (in 

case the stacking faults broadening is negligi-

ble),  cospi hklL   , and the Wilson equation, 

si  4ehkl tan  (where ehkl = d/ d , d  is the 

average spacing and d its change due to the 

strain), it follows from (9): 
 

   
22 2 2sin sin 4hkl hklL e     , (10) 

 

where   i cos . All available diffraction or-

ders from a given set of crystal lattice planes (or all 

diffraction maxima in case of a cubic sample) can 

be used to construct the linear plot 
2 sin2  

against  sin2 . The size and strain parameters 

are found from the slope, 



 Lhkl , and the ordinate 

intercept,  
2

4 hkle  [16, 13]. 

The shape of the crystallites may be as-

sumed in case the integral width varies with the 

indices of diffraction lines. Let the mean shape of 

hexagonal crystallites be plate-like, which thick-

ness (in the direction of c axis) is much smaller 

than the base diameter (in the direction of a axis). 

In such a case, diffraction lines 00l are much 

broader than the lines hk0, while the lines hkl are 

intermediate in broadening.    

Both approaches, Warren-Averbach and in-

tegral width methods, depend, among others, on 

the estimated background level along the diffrac-

tion pattern and on the inevitable truncation of 

diffraction profile tails. The truncation-background 

level error distorts the Fourier coefficients of the 

diffraction profile and may contribute to the hook 

effect introducing errors in the size and strain pa-

rameter values ([5]). Instead of the theoretical val-

ue, i = I [
_
 , + ]/I(0), the measured value is iTB 

= i –MM – 2M I(M )/I(0). iTB is the truncat-

ed integral width with the background below the 

profile subtracted (Fig. 1). In case –M andM are 

the points where the profile ordinates fall to the 

one hundredth of I(0) (this choice was arbitrary 

and corresponds to an average detection limit in 

intensity measurement), the following combined 

truncation-background level errors are obtained for 

the bell-shaped functions [17, 18]: 
 

  Function          iTB /i  for  I(M)/I(0) = 0.01 

Cauchy   0.873 

pseudo-Voigt  0.914 

Voigt   0.915 

Cauchy
2  

0.948 

Gauss   0.973 

 

 
 

Fig. 1.  A bell-shaped function with parameters used  

in the text. 

 
It follows that the truncation-background 

level error more affects the functions, which are 

usually used in literature to describe the crystallite 

size parameter, than the ones used to describe the 

strain parameter, in line with the fact that the for-

mer have longer tails than the latter. The combined 
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error is the biggest for C() (12.7 %), and the 

smallest for G() (2.7 %). The error for V() and 

Vp() (8.5 %) is in between of those for C() and 

G(), as expected. This is in agreement with ex-

perimental evidence: the crystallite size is more 

affected by the accuracy with which the profile 

tails are measured than it is the strain. 

 
5. EXAMPLES 

 

Two cases of high symmetry, cubic, samples 

are presented: strain-free MgO showing only crys-

tallite size broadening; NiO showing both crystal-

lite size and strain broadening [17, 18]. In these 

cases, precautions for minimization of the com-

bined truncation-background level error were un-

dertaken. The influence of the background level 

error on the integral width, and consequently on 

the crystallite size and strain parameters, was 

found for a pure diffraction profile obtained by the 

Stokes method. Also, the broadening of diffraction 

lines which takes place during the phase transition 

-In2Se3↔-In2Se3 is described briefly [19, 20]. 

The next example is the process of graphitization 

of the petroleum coke where all causes of broad-

ening are present [21]. 

According to Warren [5], the background 

level of the broadened profile, h(), should be 

equal to the level of the instrumental profile, g(). 
This statement appears to be a very good approxi-

mation and was applied in the following examples.  

Diffractometers with adequate X-ray optics and 

narrow slits provide rather sharp profiles g(), and 

their background level can be estimated with a 

satisfactory accuracy. 

 
5.1. MgO 

  

MgO (Fm3m, Z = 4, a = 0.4213(1) nm at 25 

°C) was prepared from basic magnesium carbonate 

by calcination from 600 to 1300 ºC for 6 hours, 

followed by slow cooling inside the furnace to RT, 

in order to anneal strains. The widths of diffraction 

lines decreased as the calcination temperature in-

creased. MgO1300 showed very sharp diffraction 

lines, being practically as sharp as those of pure Ge 

(having micrometre sized grains) for which it was 

proved to represent the instrumental broadening. 

Therefore, line profiles of MgO1300 were used as 

g()'s in deconvolution of the line profiles of 

MgO600 to MgO1000 by the Stokes method. Five 

line profiles were analyzed, 200, 220, 222, 420 and 

422. The Fourier coefficients obtained by decon-

volution usually irregularly oscillate at higher 

orders (Fig. 2). If all as-calculated Fourier coeffi-

cients, shown in Figure 2, were used in the synthe-

sis of f(), a totally inadequate result would be ob-

tained.  

 

 
 

Fig. 2. As-calculated Fourier coefficients of pure  

diffraction profile, f(), for 200 MgO650 

 
Therefore, all as-calculated Fourier coeffi-

cients cannot be used either in the synthesis of a 

proper f() or in the Warren-Averbach method. 

Instead, only low order as-calculated (say, first 20 

to 40) coefficients, which gradually decreased as 

their order increased, were used. When they started 

to oscillate (say, above the 20
th
 to 40

th
 order), they 

were extrapolated asymptotically to zero as their 

order increased (Fig. 3). By using the coefficients 

selected in such a way, proper f()'s were obtained, 

which could be nicely fitted by a Voigt function.  

The line profiles h(), g() and f() for the diffrac-

tion line 200 are shown in Figure 4 (dots: meas-

ured values for h() and g(), calculated values for 

f(); full lines: fitting by a Voigt function) and for 

the diffraction line 422 in Figure 5.   

 

 
 

Fig. 3. Selected Fourier coefficients for 200 MgO650  

for synthesis of f() 
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Fig. 4. The line profiles 200 of MgO: h() – MgO650, g() – 

MgO1300 , and f() obtained by the Stokes   method; dots: 

measured values for h() and g(), calculated values for f(); 
full lines: fitting by a Voigt function 

 

 
 

Fig. 5.  The line profiles 422 of MgO: h() – MgO600, g() – 

MgO1300 and f() obtained by the Stokes method 

 

 
 

Fig. 6. Fourier coefficients F(L, hkl) vs L for five profiles  

of MgO600 obtained by the Stokes method; crystallite size  

and crystallite size distribution derived  

by the Warren-Averbach method 

The Fourier coefficients, F(L, hkl), for the 

five line profiles vs L are shown in Figure 6. One 

can notice that all F(L, hkl)'s lie practically on the 

same curve. Therefore, it can be concluded that the 

small crystallite size was the only cause of diffrac-

tion broadening. Figure 6 also shows the value of 

the crystallite size, LWA, and the approximate 

crystallite size distribution, d
2
F(L)/dL

2
, derived by 

the method of Warren and Averbach. The hook 

effect was practically absent, which means that the 

background level was not overestimated. The de-

scribed procedure is a proof that the Stokes meth-

od, if performed properly, yields f()'s with mini-

mum approximations. 

Having calculated the Fourier coefficients of 

f()'s, i's  were obtained by equation 
 

Fre(0)(2ΘM – 2Θ–M)/f(0),            (11) 

 

Fre(0) being the zero cosine Fourier coefficient. The-

se i's were used to calculate the crystallite size by 

using the Scherrer equation, Lhkl   i cos  . 

The values of Lhkl were 15% bigger (as expected 

according to the literature, e.g. [13]), than LWA, 

but similar for various hkl. The values of i's ob-

tained by (11) were used to construct the plot ac-

cording to equation (10) for MgO600, shown in 

Figure 7. 

A straight line through the origin was ob-

tained, this meaning that no strains were present in 

the sample. A crystallite size Lhkl of 10.0(5) nm 

was obtained from the slope of the straight line. As 

the calcination temperature of MgO increased from 

600 to 1000 ºC, the crystallite size increased from 

10 to 44 nm, while the specific surface area de-

creased from 50 to 16 m
2
/g. 

 

 
 

Fig. 7. The application of equation (10) on five profiles  

of MgO600; Lhkl = 10.0(5) nm; bars indicate estimated  

standard deviations 
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In order to find out the dependence of the in-
tegral width on the background level error for pure 
diffraction profile, obtained by the Stokes decon-
volution, the background level was intentionally 
overestimated up to 5 %, in steps of 0.1 to 0.5 %. 
Of course, both the integral intensity of the profile 
(that is, the surface under the profile) and the in-
tensity maximum of the profile decreased with the 
progressive overestimation of the background lev-
el. But, the decrease of the integral intensity was 
found bigger than the decrease of the maximum 
intensity. Therefore, the integral width decreased 
(for 3%) with the overestimation of the back-
ground level (for 5%). The corresponding results 
for pure diffraction profile f() of MgO650, obtained 
by the Stokes method (Fig. 4), are shown in Figure 
8. That dependence was fitted by a third order pol-
ynomial function. The extrapolation of that de-
pendence to the point of zero background level 
overestimation may yield a true background level 
of diffraction profile; this procedure thus elimi-
nates a possible initial error in the background 
level. The corresponding dependence of the crys-
tallite size on the background overestimation is 
shown in Figure 9 [17, 18]. 

 

 
 

Fig. 8. Dependence of the integral width of pure diffraction 

profile f() of MgO650, obtained by the Stokes method (Fig. 

4.), on the relative overestimation of the background level 

 

 
 

Fig. 9. Dependence of the crystallite size of MgO650  (Figs. 4, 

8) on the relative overestimation of the background level 

5.2. NiO 
 

NiO (Fm3m, Z = 4, a = 0.4177(1) nm at 25 

°C) obtained from Ni(OH)2 by thermal decompo-

sition showed rather broad diffraction lines. Dif-

fraction lines of Ge powder, intimately mixed with 

NiO, were used as g()'s. As i's of NiO, deduced 

by the Stokes method (following the procedure 

described above for MgO), did not vary with  

either as 1/cosortan, it was concluded that 

both small crystallite size and strain caused broad-

ening. The application of equation (10) on three 

diffraction line profiles is shown in Figure 10. It 

may be proposed that the hexagonal plates of 

Ni(OH)2 split into layers of NiO by the thermal 

treatment at moderate temperatures; more details 

are given in [22]. 

 

 
 

Fig. 10. The application of equation (10) on three profiles  

of NiO; Lhkl = 8.3(5) nm, ehkl = 6.0(5) × 10–3; bars indicate  

estimated standard deviations 

 
5.3. Phase transition -In2Se3↔-In2Se3 

 

In2Se3 exhibits at least four polytypic phase 

transitions in the interval from low temperature to 

the melting point [19, 20]. The transition -

In2Se3↔-In2Se3 as detected by X-ray diffraction is 

shown in Figуре 11. Crystal data for these two 

phases are: 

 

In2Se3: R3  m, Z = 3, a = 0.4025(5), 

c = 2.8762(7) nm at 25 °C, 

In2Se3:  R3  m, Z = 3, a = 0.4000(8), 

c = 2.833(1) nm at 205 °C. 

 

One can notice the shift of diffraction lines 

with the change of temperature due to thermal 

expansion. It is similar for both  and  phases: 

19/(10
6 
°C) along the c axis and 3/(10

6 
°C) along 

the a axis. A big temperature hysteresis is present: 
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the transition -In2Se3 -In2Se3 takes place 

above 200 °C, while the reversal transition, -

In2Se3 -In2Se3, below 80 °C. These tempera-

tures depend on the synthesis and previous history 

of the sample. For a polycrystalline sample, having 

highly oriented grains, the transition -In2Se3 -

In2Se3 may take place between 80 and 50 °C, while 

a powdered sample can be undercooled and be 

stable in the -phase below the room temperature. 

The broadening of diffraction lines is pronounced 

during the phase transitions indicating an increased 

disorder inside crystallites. The separation of the 

spectral doublet CuK12 is hardly visible during 

the transitions. That separation is increased a little 

at temperatures before and after phase transitions.  

 

 
 

Fig. 11. Diffraction line 0 0 27 of In2Se3 at different  

temperatures, exhibiting broadening during the phase  

transition -In2Se3 ↔ -In2Se3 

 
5.4. Graphitization of petroleum coke 

 

This process represents a gradual transition 

from the petroleum coke toward the non-graphitic 

carbon, the graphitic carbon and the crystalline 

graphite (P63/mmc, Z = 4, a = 0.2460(1), c = 

0.6708 (2) nm at 25 °C) during a gradual increase 

of temperature. Petroleum coke consists of minute 

grains in which there are several (say, ten) roughly 

parallel layers, having a diameter of 3 to 4 nm, 

which are mutually randomly oriented about the 

layer normal. X-ray diffraction pattern is typical 

for a random layer structure [5], showing symmet-

rical broad lines 002 and 004 and asymmetrical 2D 

bands 10 and 11 (Figs. 12a, 12b). As the tempera-

ture increases, the 2D bands sharpen and move 

toward smaller Bragg angles, but retain their 

asymmetrical shape. This indicates an increase of 

the layer diameter; however, the layers remain in 

random mutual orientation.  The lines 002 and 004 

also sharpen with temperature and shift toward 

higher Bragg angles, indicating a decrease of 

strains and an increase of number of layers in 

grains. Above 1600 °C a very broad line 006 also 

appears in diffraction pattern. After heating to 

1500 °C and to 2150 °C the average interlayer 

spacing decreases to 0.3440 nm and to 0.3425 nm, 

resp., as measured at room temperature.  

 

 
 

Fig. 12a. Parts of X-ray diffraction patterns of nongraphitic 

and graphitic carbons heated at high temperatures (patterns 

taken at room temperature after cooling) 

 

 
 

Fig. 12b. Parts of X-ray diffraction patterns of nongraphitic 

and graphitic carbons heated at high temperatures (patterns 

taken at room temperature after cooling) 

 
Diffraction patterns of samples heated up to 

2200 °C are typical for the non-graphitic carbon. 

But the pattern of the sample heated at 2230 °C 
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shows a beginning of splitting of 2D bands into 3D 

lines: 10 into 100, 101 and 102, and 11 into 110 

and 112 (Figs. 12a, 12b). These modulations indi-

cate the start of graphitizaton. The neighbouring 

layers, having reached the diameter of ~10 nm, 

begin to undergo mutual graphitic ordering. Also, 

diffraction lines 00l shift abruptly toward higher 

Bragg angles, indicating an abrupt decrease of the 

interlayer spacing (Fig. 13). As the temperature 

increases further, up to 3000 °C, all diffraction 

lines sharpen, due to an increase of the crystallite 

size and their further ordering (a decrease of 

strains), approaching the structure of highly crys-

talline graphite (Fig. 14). The interlayer spacing 

gradually approaches the value typical for graphite. 

The fraction of layers involved in faultings falls 

from 1 to 0.15 upon heating from room tempera-

ture to 3000 °C [21]. 

 

 
 

Fig. 13. The interlayer spacing, d002, of nongraphitic and 

graphitic carbons heated at high temperatures (measured at 

room temperature after cooling) 

 

 
 

Fig.14. The crystallite size (in direction normal to the graphite 

layers) determined by the methods of Warren and Averbach, 

LcWA, and Scherrer, Lc, and the lattice strain, (e2
LWA)1/2, of 

nongraphitic and graphitic carbons heated at high temperatures 

(all measured at room temperature after cooling) 

6. OTHER APPROACHES 
 

The described methods for interpretation of 

diffraction broadening have been developed before 

the introduction of sophisticated instrumentation 

and fast computers. Nowadays, reliable diffraction 

data can be collected by a modern diffractometer 

and the decovolution can be performed in a very 

short time. For instance, the Stokes deconvolution 

followed by the Warren-Averbach and integral 

widths analyses has been implemented in easy-to-

use program, XBroad, for a quick determination of 

the basic microstructural information from X-ray 

powder diffraction patterns [23]. 

The introduction of analytical functions to 

fit diffraction line profiles has been a great ad-
vancement in interpretation of diffraction patterns. 
That has led to the development of the Rietveld 
method [24], to diffraction pattern decomposition 
techniques [25] and to the general concept of the 
whole powder pattern fitting (WPPF), e.g. [26].   

The whole powder pattern modelling 
(WPPM) allows a simultaneous processing of the 
whole X-ray diffraction pattern; it is based on a 
suitable model of domain size/shape and strain, 
without using arbitrary analytical profile functions, 
e.g. [27]. These new approaches have been proved 

to be very useful.  
The known crystal structure of a given sub-

stance can be refined, e.g., as a function of temper-
ature or pressure, using the Rietveld method. That 
method is a so-called full pattern analysis tech-
nique. A model of the crystal structure, together 

with instrumental and microstructural information, 
are used to generate the theoretical diffraction pat-
tern that can be compared to the observed pattern. 
The least squares procedure is then used to mini-
mize the difference between the calculated pattern 
and the observed pattern by adjusting model pa-

rameters. That procedure may result in determina-
tion of the crystal structure and microstructural 
parameters; however, it is rather challenging due to 
the overlap of diffraction lines in the X-ray powder 
diffraction pattern. 
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