The influence of organoclays on the morphology, phase separation and thermal properties of polycarbonate-based polyurethane hybrid materials

Authors

  • Jelena Pavličević Faculty of Technology, University of Novi Sad
  • Milena Špírková Institute of Macromolecular Chemistry AS CR v.v.i., Prague, Czech Republic
  • Snežana Sinadinović-Fišer Faculty of Technology, University of Novi Sad
  • Jaroslava Budinski-Simendić Faculty of Technology, University of Novi Sad
  • Olga Govedarica Faculty of Technology, University of Novi Sad
  • Milovan Janković Faculty of Technology, University of Novi Sad

DOI:

https://doi.org/10.20450/mjcce.2013.144

Keywords:

polycarbonate-based polyurethane, bentonite, montmorillonite, phase separation, thermal properties

Abstract

Polycarbonate-based polyurethane (PC-PU) nanostructured composites were obtained using a one-step technique, by the addition of 1 wt.% organically modified clays (either bentonite or montmorillonite). Only aliphatic components (polycarbonate diol, hexamethylene-diisocyanate and 1,4-butane diol) were used as reactants. The hard segment content of the obtained polyurethanes was 30 wt.%. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were performed to investigate the morphology and hydrogen bonding formation in prepared elastomers. The influence of nanofiller addition on thermal properties of PC-PUs was studied using differential scanning calorimetry (DSC). The degree of phase separation of polyurethane nanocomposites was not influenced by the dispersion of silicate layers in the elastomeric matrix. It was determined that bentonite and montmorillonite affect the melting transition of hard segments and the recrystallization process, which is very important for the processing and recycling of the prepared polyurethane hybrid materials.

References

S.S. Liow, V.T. Lipik, L.K. Widjaja, S.S. Venkatraman, M.J.M. Abadie, Enhancing mechanical properties of thermoplastic polyurethane elastomers with 1,3-trimethylene carbonate, epsilon-caprolactone and l-lactide copolymers via soft segment crystallization, eXPRESS Polym. Lett., 5, 897-910 (2011).

Z.S. Petrović, J. Ferguson, Polyurethane elastomers, Prog. Polym. Sci., 16, 695-836 (1991).

M. Špírková, R. Poręba, J. Pavličević, L. Kobera, J. Baldrian, M. Pekárek, Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly, J. Appl. Polym. Sci., 126, 1016-1030 (2012).

C. Prisacariu, Polyurethane Elastomers. From Morphology to Mechanical Aspects, Springer Verlag, Wien, 2011.

M. Špírková, A. Strachota, M. Urbanová, J. Baldrian, J. Brus, M. Šlouf, A. Kuta, Z. Hrdlička, Structural and surface properties of novel polyurethane films, Mater. Manuf. Process., 24, 1185-1189 (2009).

I. Khan, N. Smith, E. Jones, D.S. Finch, R.E. Cameron, Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: Materials selection and evaluation, Biomaterials, 26, 621-631 (2005).

M. Špírková, J. Pavličević, A. Strachota, R. Poreba, O. Bera, L. Kaprálková, J. Baldrian, M. Šlouf, N. Lazić, J. Budinski-Simendić, Novel polycarbonate-based polyurethane elastomers: Composition–property relationship, Eur. Polym. J., 47, 959-972 (2011).

A. Kultys, R. Rogułska, S. Pikus, K. Skrzypiec, The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders, Eur. Polym. J., 45, 2629-2643 (2009).

E.M. Christenson, J.M. Anderson, A. Hiltner, Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation, J. Biomed. Mater. Res. A, 76, 480-490 (2006).

A. Eceiza, M.D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008).

H. Tanaka, M. Kunimura, Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures, Polym. Eng. Sci., 42, 1333-1349 (2002).

Z.W. Ma, Y. Hong, D.M. Nelson, J.E. Pichamuthu, C.E. Leeson, W.R. Wagner, Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties, Biomacromolecules, 12, 3265-3274 (2011).

J. Pavličević, M. Špirkova, A. Strachota, K. Mészáros Szécsényi, N. Lazić, J. Budinski-Simendić, The influence of montmorillonite and bentonite addition on thermal properties of polyurethanes based on aliphatic polycarbonate diols, Thermochim. Acta, 509, 73-80 (2010).

K. Kojio, M. Furukawa, S. Motokucho, S. Shimada, M. Sakai, Structure-mechanical property relationships for polycarbonate urethane elastomers with novel soft segments, Macromolecules, 42, 8322-8327 (2009).

A. Kultys, M. Rogułska, New thermoplastic poly(carbonate-urethane) elastomers, Pol. J. Chem. Technol, 13, 23-30 (2011).

K. Kojio, Y. Nonaka, T. Masubuchi, M. Furukawa, Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers, J. Polym. Sci. Part B: Polym. Phys., 42, 4448-4458 (2004).

R. Hernandez, J. Weksler, A. Padsalgikar, T. Choi, E. Angelo, J.S. Lin, L.C. Xu, C.A. Siedlecki, J. Runt, A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities, Macromolecules, 41, 9767-9776 (2008).

M. Stankowski, A. Kropidlowska, M. Gazda, J.T. Haponiuk, Properties of polyamide 6 and thermoplastic polyurethane blend containing modified montmorillonites, J. Therm. Anal. Calorim., 94, 817–823 (2008).

H.F. Naguib, M.S. Abdel Aziz, G.R. Saad, Synthesis, morphology and thermal properties of polyurethanes nanocomposites based on poly(3-hydroxybutyrate) and organoclay, J. Ind. Eng. Chem., in press (2012), http://dx.doi.org/10.1016/j.jiec.2012.06.023

A. Usuki, M. Kato, A. Okada, T. Kurauchi, Synthesis of polypropylene-clay hybrid, J. Appl. Polym. Sci., 63, 137-138 (1997).

M. Song, H.S. Xia, K.J. Yao, D.J. Hourston, A study on phase morphology and surface properties of polyurethane/organoclay nanocomposite, Eur. Polym. J., 41, 259-266 (2005).

A. Leszczynska, J. Njuguna, K. Pielichowski, J.R. Banerjee, Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement, Thermochim. Acta., 453, 75-96 (2007).

A.K. Barick, D.K. Tripathy, Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites, Appl. Clay Sci., 52, 312–321 (2011).

N. Sarier, E. Onder, Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams, Thermochim. Acta 510, 113-121 (2010).

F. Chavarria, D.R. Paul, Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure, Polymer, 47, 7760-7773 (2006).

J. Pavličević, S. Sinadinović-Fišer, J. Budinski-Simendić, O. Borota, M. Janković, M. Špírková, Ž. Knez, The phase structure of novel polycarbonate-based polyurethane-organoclay nanocomposites, Advanced Material Research, 560-561, 771-775 (2012).

L.R. Larraz, B.F. d’Arlas, A. Tercjak, A. Ribes, I. Mondragon, A. Eceiza, Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment, Eur. Polym. J., 45, 2096-2109 (2009).

C. Zhang, Z. Ren, Z. Yin, H. Qian, D. Ma, Amide II and amide III bands in polyurethane model soft and hard segments, Polym. Bull., 60, 97-101 (2008).

B. Finnigan, D. Mattin, P. Halley, R. Truss, K. Campbell, Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates, Polymer, 45, 2249-2260 (2004).

J. Jin, M. Song, K.J. Yao, A MTDSC analysis of phase transition in polyurethane-organoclay nanocomposites, Thermochim. Acta, 447, 202-208 (2006).

J. Pavličević, M. Špírková, M. Jovičić, O. Bera, R. Poreba, J. Budinski-Simendić, The structure and thermal properties of novel polyurethane/organoclay nanocomposites obtained by pre-polymerization, Composites, Part B, in press (2012).

T.K. Chen, Y.I. Tien, K.H. Wei, Synthesis and characterization of novel segmented polyurethane/clay nanocomposites, Polymer, 41, 1345-1353 (2000).

R.W. Seymour, G.M. Ester, S.L. Cooper, Infrared studies of segmented polyurethane elastomers. I. Hydrogen bonding, Macromolecules, 3, 579-583 (1970).

R.W. Seymour, S.L. Cooper, Thermal analysis of polyurethane block polymers, Macromolecules, 6, 48–53, (1973).

Downloads

Published

2013-04-30

How to Cite

Pavličević, J., Špírková, M., Sinadinović-Fišer, S., Budinski-Simendić, J., Govedarica, O., & Janković, M. (2013). The influence of organoclays on the morphology, phase separation and thermal properties of polycarbonate-based polyurethane hybrid materials. Macedonian Journal of Chemistry and Chemical Engineering, 32(1), 151–161. https://doi.org/10.20450/mjcce.2013.144

Issue

Section

Materials Chemistry

Most read articles by the same author(s)