Vibrational spectra of methylammonium iodide and formamidinium iodide in a wide temperature range

Authors

  • Miha Bukleski Ss Cyril and Methodius University
  • Sandra Dimitrovska-Lazova Ss Cyril and Methodius University
  • Slobotka Aleksovska Ss Cyril and Methodius University

DOI:

https://doi.org/10.20450/mjcce.2019.1940

Keywords:

vibrational spectra, methylammonium iodide, formamidinium iodide, phase transition

Abstract

Transmission infrared, Attenuated Total Reflectance (ATR) and Raman spectra of crystalline methylammonium iodide (MAI) and formamidinium iodide (FAI) in the temperature interval starting from –170 ºC to 200 ºC were studied. The spectra recorded in the region from 4000 to 500 cm–1 enabled resolving the ambiguities associated with the origin of some bands. For the first time a complete and detailed vibrational investigation and assignment of the IR spectra of these compounds based on the differences in the temperature dependent IR spectra for all phases, including the metastable ones, have been made. The findings support the already established crystal structure of the phases for both compounds. The correlation between the overtones and fundamental modes has been confirmed based on the temperature induced isosbestic point.

References

L.K. Ono, E.J. Juarez-Perez, Y. Qi, Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions, ACS Appl. Mater. Interfaces. 9 (2017) 30197–30246. https://doi.org/10.1021/acsami.7b06001.

J. Navas, A. Sánchez-Coronilla, J.J. Gallardo, N. Cruz Hernández, J.C. Piñero, R. Alcántara, C. Fernández-Lorenzo, D.M. De los Santos, T. Aguilar, J. Martín-Calleja, New insights into organic–inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+, Nanoscale. 7 (2015) 6216–6229. https://doi.org/10.1039/C5NR00041F.

G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci. 7 (2014) 982–988. https://doi.org/10.1039/c3ee43822h.

J. Breternitz, F. Lehmann, S.A. Barnett, H. Nowell, S. Schorr, Role of the Iodide-Methylammonium Interaction in the Ferroelectricity of CH3NH3PbI3, Angew. Chemie Int. Ed. (2019). https://doi.org/10.1002/anie.201910599.

A. Cabana, C. Sandorfy, The infrared spectra of solid methylammonium halides, Spectrochim. Acta. 18 (1962) 843–861. https://doi.org/10.1016/0371-1951(62)80089-7.

E. Castellucci, β and γ Crystal Forms of Methylammonium Chloride: Polarized Light Infrared Spectra and Raman Spectra; Infrared Spectra of Matrix Isolated Methylammonium Ion, J. Mol. Struct. 23 (1974) 449–461. https://doi.org/10.1016/0022-2860(74)87013-4.

A. Théorêt, C. Sandorfy, The infrared spectra of solid methylammonium halides-II, Spectrochim. Acta Part A Mol. Spectrosc. 23 (1967) 519–542. https://doi.org/10.1016/0584-8539(67)80310-6.

O. Yamamuro, M. Oguni, T. Matsuo, H. Suga, Calorimetric and dilatometric studies on the phase transitions of crystalline CH3NH3I, J. Chem. Thermodyn. 18 (1986) 939–954. https://doi.org/10.1016/0021-9614(86)90152-7.

M. Mączka, A. Ciupa, A. Gągor, A. Sieradzki, A. Pikul, B. Macalik, M. Drozd, Perovskite Metal Formate Framework of [NH2-CH+-NH2]Mn(HCOO)3]: Phase Transition, Magnetic, Dielectric, and Phonon Properties, Inorg. Chem. 53 (2014) 5260–5268. https://doi.org/10.1021/ic500479e.

K. Hills-Kimball, Y. Nagaoka, C. Cao, E. Chaykovsky, O. Chen, Synthesis of formamidinium lead halide perovskite nanocrystals through solid-liquid-solid cation exchange, J. Mater. Chem. C. 5 (2017) 5680–5684. https://doi.org/10.1039/c7tc00598a.

K. Mencel, P. Durlak, M. Rok, R. Jakubas, J. Baran, W. Medycki, A. Ciżman, A. Piecha-Bisiorek, Widely used hardly known. An insight into electric and dynamic properties of formamidinium iodide, RSC Adv. 8 (2018) 26506–26516. https://doi.org/10.1039/c8ra03871f.

O. Yamamuro, M. Oguni, T. Matsuo, H. Suga, P-T phase relations of methylammonium halides, Thermochim. Acta. 98 (1986) 327–338. https://doi.org/10.1016/0040-6031(86)87103-9.

H. Ishida, R. Ikeda, D. Nakamura, 1 H NMR Studies on the Reorientational Motions of Cations in Four Solid Phases of Methylammonium Iodide and the Self-Diffusion of Ions in Its Highest-Temperature Solid Phase, Bull. Chem. Soc. Jpn. 59 (1986) 915–924. https://doi.org/10.1246/bcsj.59.915.

H. Ishida, R. Ikeda, D. Nakamura, Pre-melting state of methylammonium iodide as revealed by proton magnetic resonance, Phys. Status Solidi. 70 (1982) K151–K154. https://doi.org/10.1002/pssa.2210700261.

A.A. Petrov, E.A. Goodilin, A.B. Tarasov, V.A. Lazarenko, P. V. Dorovatovskii, V.N. Khrustalev, Formamidinium iodide: Crystal structure and phase transitions, Acta Crystallogr. Sect. E Crystallogr. Commun. 73 (2017) 569–572. https://doi.org/10.1107/S205698901700425X.

K.M. Boopathi, M. Ramesh, P. Perumal, Y.C. Huang, C.S. Tsao, Y.F. Chen, C.H. Lee, C.W. Chu, Preparation of metal halide perovskite solar cells through a liquid droplet assisted method, J. Mater. Chem. A. 3 (2015) 9257–9263. https://doi.org/10.1039/c4ta06392a.

M. Bukleski, S. Dimitrovska-Lazova, V. Makrievski, S. Aleksovska, A simple approach for determination of the phase transition temperature using infrared temperature-induced isosbestic points, Spectrochim. Acta Part A Mol. Spectrosc. in prep. (n.d.) 1–15.

N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting, Angew. Chemie - Int. Ed. 53 (2014) 3151–3157. https://doi.org/10.1002/anie.201309361.

E. Kucharska, J. Hanuza, A. Ciupa, M. Mączka, L. Macalik, Vibrational properties and DFT calculations of formamidine-templated Co and Fe formates, Vib. Spectrosc. 75 (2014) 45–50. https://doi.org/10.1016/j.vibspec.2014.09.001.

O. Yamamuro, T. Matsuo, H. Suga, W.I.F. David, R.M. Ibberson, A.J. Leadbetter, Neutron diffraction and calorimetric studies of methylammonium iodide, Acta Crystallogr. Sect. B. 48 (1992) 329–336. https://doi.org/10.1107/S0108768192000260.

T. Glaser, C. Müller, M. Sendner, C. Krekeler, O.E. Semonin, T.D. Hull, O. Yaffe, J.S. Owen, W. Kowalsky, A. Pucci, R. Lovrinčić, Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites, J. Phys. Chem. Lett. 6 (2015) 2913–2918. https://doi.org/10.1021/acs.jpclett.5b01309.

F.A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 1990. https://doi.org/9780471510949.

A. Möller, J. George, R. Dronskowski, First Full Structural Characterization of Chloro Formamidinium Salts, Zeitschrift Fur Anorg. Und Allg. Chemie. 644 (2018) 1485–1491. https://doi.org/10.1002/zaac.201800164.

G. Bator, R. Jakubas, J. Baran, H. Ratajczak, Infrared studies of structural phase transitions in (CH3NH3)3Bi2I9 (MAIB), J. Mol. Struct. 325 (1994) 45–51. https://doi.org/10.1016/0022-2860(94)80016-2.

E. Whalley, Infrared Spectra of the Methylammonium Halides: Effects of Orientational Disorder about One Axis, J. Chem. Phys. 51 (1969) 4040–4042. https://doi.org/10.1063/1.1672626.

L. Wang, K. Wang, B. Zou, Pressure-Induced Structural and Optical Properties of Organometal Halide Perovskite-Based Formamidinium Lead Bromide, J. Phys. Chem. Lett. 7 (2016) 2556–2562. https://doi.org/10.1021/acs.jpclett.6b00999.

M. Mylrajan, T.K.K. Srinivasan, Raman and infrared spectra of phase transition in CH3NH3ClO4, J. Mol. Struct. 143 (1986) 105–108. https://doi.org/10.1016/0022-2860(86)85215-2.

T.K.K. Srinivasan, M. Mylrajan, Phase transitions in CH3NH3ClO4 and CH3ND3ClO4, Phase Transitions. 38 (1992) 97–113. https://doi.org/10.1080/01411599208203466.

J.T. Edsall, H. Scheinberg, Raman Spectra of Amino Acids and Related Compounds V. Deuterium Substitution in the Amino Group, J. Chem. Phys. 8 (1940) 520–525. https://doi.org/10.1063/1.1750705.

Downloads

Additional Files

Published

2019-12-30

How to Cite

Bukleski, M., Dimitrovska-Lazova, S., & Aleksovska, S. (2019). Vibrational spectra of methylammonium iodide and formamidinium iodide in a wide temperature range. Macedonian Journal of Chemistry and Chemical Engineering, 38(2), 237–252. https://doi.org/10.20450/mjcce.2019.1940

Issue

Section

Spectroscopy

Most read articles by the same author(s)

> >>