Chromatographic parameters as tools for predicting the biological activity of azo derivatives

Authors

  • Suzana Apostolov University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
  • Gyöngyi Vastag University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia

DOI:

https://doi.org/10.20450/mjcce.2021.2045

Keywords:

chromatographic parameters, drug-likeness rules, biological activity parameters, multivariate methods, azo derivatives

Abstract

Preliminary assessment of the bioactive profile of azo derivatives was performed applying drug-likeness rules. As the presumed criteria of lipophilicity chromatographic parameters (RM0, m and C0) were calculated in mixtures water/ methanol and water/ acetonitrile by using reversed phase thin-layer chromatography (RPTLC C18/ UV254s). The relationships between chromatographic parameters and relevant software parameters of biological activity of azo derivatives were examined by linear regression and by two multivariate methods. Good linear relationships for each applied system were obtained. The multivariate methods show similarity of the chromatographic parameters (RM0, C0) with standard measure of lipophilicity and pharmacokinetic predictors. The chromatographic parameter m obtained in the same conditions exhibits better agreement with the drug-likeness and toxicity parameters. On the values of azo derivatives’ bioactivity parameters the polarity of the substituent has higher impact than its electronic effects.

References

E. J. R. Almeida, C. R. Corso, Decolorization and remov-al of toxicity of textileazodyes using fungal biomass pelletized, Int. J. Environ. Sci. Technol. 16, 1319–1328 (2019). DOI: https://doi.org/10.1007/s13762-018-1728-5

B. J. Brüschweiler, S. Küng, D. Bürgi, L. Muralt, E. Nyfeler, Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles, Regul. Toxicol. Pharmacol. 69, 263–272 (2014).

DOI: https://doi.org/10.1016/j.yrtph.2017.06.012

T. R. Waghmode, M. B. Kurade, R. T. Sapkal, C. H. Bhosale, B. H. Jeon, S. P. Govindwar, Sequential photo-catalysis and biological treatment for the enhanced degra-dation of the persistent azodye methyl red, J. Hazard. Mater. 371, 115–122 (2019).

DOI: https://doi.org/10.1016/j.jhazmat.2019.03.004

M. Hernández-Zamora, F. Martínez-Jerónimo, Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos, Environ. Sci. Pollut. Res. 26, 11743–11755 (2019).

DOI: https://doi.org/10.1007/s11356-019-04589-1

B. J. Brüschweiler, C. Merlot, Azo dyes in clothing tex-tiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet, Regul. Toxicol. Pharmacol. 88, 214–226 (2017).

DOI: https://doi.org/10.1016/j.yrtph.2017.06.012

V. K. Balakrishnan, S. Shirin, A. M. Aman, S. R. de Solla, J. Mathieu-Denoncourt, V. S. Langlois, Genotoxic and carcinogenic products arising from reductive trans-formations of the azo dye, Disperse Yellow 7, Chemo-sphere 146, 206–215 (2016).

DOI: https://doi.org/10.1016/j.chemosphere.2015.11.119

M. M. Hashem, Y. M. Abd-Elhakim, K. Abo-EL-Sooud, M. M. E Eleiwa, Embryotoxic and teratogenic effects of tartrazine in rats, Toxicol. Res. 35, 75–81 (2019).

DOI: https://doi.org/10.5487/TR.2019.35.1.075

P. Rani, V. K. Srivastava, A. Kumar, Synthesis and anti-inflammatory activity of heterocyclic indole derivatives, Eur. J. Med. Chem. 39, 449–452 (2004).

DOI: https://doi.org/10.1016/j.ejmech.2003.11.002

M. Gaber, Y. S. El-Sayed, K. Y. El-Baradie, R. M. Fahmy, Complex formation, thermal behavior and stabil-ity competition between Cu(II) ion and Cu0 nanoparticles with some new azodyes. Antioxidant and in vitro cytotox-ic activity, Eur. J. Med. Chem. 107, 359–370 (2013). DOI: https://doi.org/10.1016/j.saa.2013.01.039

N.N. Ayare, S.H. Ramugade, N. Sekar, Photostable coumarin containing azo dyes with multifunctional prop-erty, Dyes Pigm. 163, 692–699 (2019).

DOI: https://doi.org/10.1016/j.dyepig.2018.12.050

V. Dimova, N. Perišić-Janjić, Qsar study by 1,2,4-triazoles using several physicochemical descriptors, Maced. J. Chem. Chem. Eng. 28, 79–89 (2009).

DOI: http://dx.doi.org/10.20450/mjcce.2009.223

X. Xu, F. Luan, H. Liu, J. Cheng, X. Zhang, Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools, Spectrochim. Acta, Part A 83, 353–361 (2011).

DOI: https://doi.org/10.1016/j.saa.2011.08.046

D. Vaněrková, P. Jandera, J. Hrabica, Behaviour of sul-phonated azodyes in ion-pairing reversed-phase high-performance liquid chromatography, J. Chromatogr. A 1143, 112–120 (2007).

DOI: https://doi.org/10.1016/j.chroma.2006.12.075

S. Manganelli, E. Benfenati, A. Manganaro, S. Kulkarni, T.S. Barton-Maclaren, M. Honma, New quantitative structure-activity relationship models improve predictabil-ity of ames mutagenicity for aromatic AZO compounds, Toxicol. Sci. 153, 316–326 (2016).

DOI: https://doi.org/10.1093/toxsci/kfw125

P. S. Jogi, J. Meshram, J. Sheikh, T. Ben Hadda, Synthe-sis, biopharmaceutical characterization, and antimicrobial study of novel azo dyes of 7-hydroxy-4-methylcoumarin, Med. Chem. Res. 22, 4202–4210 (2013). DOI: https://doi.org/10.1007/s00044-012-0421-3

I. Azad, M. Nasibullah, T. Khan, F. Hassan, Y. Akhter, Exploring the novel heterocyclic derivatives as lead mole-cules for design and development of potent anticancer agents, J. Mol. Graphics Modell. 81, 211–228 (2018). DOI: https://doi.org/10.1016/j.jmgm.2018.02.013

S. Boudergua, M. Alloui, S. Belaidi, M. M. Al Mogren, U. A. A. Ellatif Ibrahim, M. Hochlaf, QSAR Modeling and Drug-Likeness Screening for Antioxidant Activity of Benzofuran Derivatives, J. Mol. Struct.1189, 307–314 (2019). DOI: https://doi.org/10.1016/j.molstruc.2019.04.004

M. J. Waring, Lipophilicity in drug discovery, Expert Opin. Drug Discovery 5, 235–248 (2010).

DOI: https://doi.org/10.1517/17460441003605098

C. M. Hosey, L. Z. Benet, Predicting the extent of metab-olism using in vitro permeability rate measurements and in silico permeability rate predictions, Mol. Pharmaceu-tics 12, 1456–1466 (2015).

DOI: https://doi.org/10.1021/mp500783g

N. P. Milošević, V. B. Dimova, N. U. Perišić-Janjić, RP TLC data in correlation studies with in silico pharmacoki-netic properties of benzimidazole and benztriazole deriva-tives, Eur. J. Pharm. Sci. 49, 10–17 (2013).

DOI: https://doi.org/10.1016/j.ejps.2013.01.018

S. Šegan, J. Penjišević, V. Šukalović, D. Andrić, D. Mi-lojković-Opsenica, S. Kostić-Rajačić, Investigation of lip-ophilicity and pharmacokinetic properties of 2-(methoxy)phenylpiperazine dopamine D2 ligands, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1124, 146–153 (2019).

DOI: https://doi.org/10.1016/j.jchromb.2019.06.006

A. H. Rageh, N. N. Atia, H. M. Abdel-Rahman, Lipo-philicity estimation of statins as a decisive physicochemi-cal parameter for their hepato-selectivity using reversed-phase thin layer chromatography, J. Pharm. Biomed. Anal. 142, 7–14 (2017).

DOI: https://doi.org/10.1016/j.jpba.2017.04.037

A. Olivares-Morales, H. Lennernäs, L. Aarons, A. Ros-tami-Hodjegan, Translating Human Effective Jejunal In-testinal Permeability to Surface-Dependent Intrinsic Per-meability: A Pragmatic Method for a More Mechanistic Prediction of Regional Oral Drug Absorption, AAPS J. 17, 1177–1192 (2015).

DOI: https://doi.org/10.1208/s12248-015-9758-0

M. J. Cho, D. P. Thompson, C. T. Cramer, T. J. Vidmar, J. F. Scieszka, The Madin Darby Canine Kidney (MDCK) Epithelial Cell Monolayer as a Model Cellular Transport Barrier, Pharm. Res. 6, 71–77 (1989).

DOI: https://doi.org/10.1023/A:1015807904558

P. Ballabh, A. Braun, M. Nedergaard, The blood-brain barrier: An overview: Structure, regulation, and clini-calimplications, Neurobiol. Dis. 16, 1–13 (2004).

DOI: https://doi.org/10.1016/j.nbd.2003.12.016

C. Toma, D. Gadaleta, A. Roncaglioni, A. Toropov, A. Toropova, M. Marzo, E. Benfenati, QSAR Development for Plasma Protein Binding: Influence of the Ionization State, Pharm. Res. 36, Article number 28 (2019).

DOI: https://doi.org/10.1007/s11095-018-2561-8

C. P. Chen, C. C. Chen, C. W. Huang, Y. C. Chang, Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative struc-ture-activity relationship for skin permeability, Molecules 23, Article number 911 (2018).

DOI: https://doi.org/10.3390/molecules23040911

G. A. R. Oliveira, R. N. Ducas, G. C. Teixeira, A. C. Batista, D. P. Oliveira, M. C. Valadares, Short Time Ex-posure (STE) test in conjunction with Bovine Corneal Opacity and Permeability (BCOP) assay including histo-pathology to evaluate correspondence with the Globally Harmonized System (GHS) eye irritation classification of textile dyes, Toxicol. In Vitro 29, 1283–1288 (2015).

DOI: https://doi.org/10.1016/j.tiv.2015.05.007

H. Lee, M. S. Yu, S. R. Kazmi, S. Y. Oh, K. H. Rhee, M. A. Bae, B. H. Lee, D. S. Shin, K. S. Oh, H., Ceong D., Lee D. Na, Computational determination of hERG-related cardiotoxicity of drug candidates, BMC Bioinf. 20, Article number 250(2019).

DOI: https://doi.org/10.1186/s12859-019-2814-5

J. Trifunović, V. Borčić, S. Vukmirović, V. Vasović, M. Mikov, Bile acids and their oxo derivatives: environmen-tally safe materials for drug design and delivery, Drug. Chem Toxicol. 40, 397–405 (2017).

DOI: https://doi.org/10.1080/01480545.2016.1244680

B. M. Matijević, Đ. Đ. Vaštag, S. L. Apostolov, F. As-saleh, A. D. Marinković, D. Ž. Mijin, Solvatochromism of Thiouracil Azo Dyes, J. Solution Chem. 45, 885–906 (2016). DOI: https://doi.org/10.1007/s10953-016-0482-x

E. C. Bate-Smith, R. G. Westall, Chromatographic behav-iour and chemical structure I. Some naturally occurring phenolic substances, Biochim. Biophys. Acta. 4, 427–440 (1950).

DOI: https://doi.org/10.1016/0006-3002(50)90049-7

E. Soczewiński, C. A. Wachtmeister, The relation be-tween the composition of certain ternary two-phase sol-vent systems and RM values, J. Chromatogr. A 7, 311–320 (1962).

DOI: https://doi.org/10.1016/S0021-9673(01)86422-0

G. L. Biagi, A. M. Barbaro, A.; Sapone, M. Recanatini, Determination of lipophilicity by means of reversed-phase thin-layer chromatography. I. Basic aspects and relation-ship between slope and intercept of TLC equations, J. Chromatogr. A, 662, 341–361 (1994).

DOI: https://doi.org/10.1016/0021-9673(94)80521-0

M. L. Bieganowska, A. Doraczynska-Szopa, A. Petruczynik, The retention behaviour of some sulphona-mides on different TLC plates. 2. Comparison ofthe selec-tivity of the systems and quantitative determination of hy-drophobicity parameters, J. Planar Chromatogr.--Mod. TLC 8, 122–128 (1995).

http://www.vcclab.org (accessed in September 2013)

https://www.molinspiration.com/ (accessed in March 2019)

www.simulation-plus.com (accessed in September 2013)

https://preadmet.bmdrc.kr/ (accessed in June 2017)

D. Dabić, M. Natić, Z. Džambaski, R. Marković, D. Mi-lojković-Opsenica, Z. Tešić, Quantitative structure-retention relationship of new N-substituted 2-alkylidene-4-oxothiazolidines, J. Sep. Sci. 34, 2397–2404 (2011). DOI: https://doi.org/10.1002/jssc.201100266

G. Vastag, S. Apostolov, B. Matijević, Assaleh, F. QSRR approach in examining selected azo dyes, J. Liq. Chromatogr. Relat. Technol. 39, 674–681 (2016).

DOI: https://doi.org/10.1080/10826076.2016.1230748

D. Z. Mijin, G. S. Ušćumlić, N. V. Valentić, A. D. Marinković, Synthesis of azo pyridone dyes [Sinteza ar-ilazo piridonskih boja], Hem. Ind. 65, 517–532 (2011). DOI: https://doi.org/10.2298/HEMIND110428037M

T. Cserháti, Lipophilicity Determination of Some Mono-amine Oxidase Inhibitors by Reversed-Phase Thin-Layer Chromatography, The Effect of pH, J. Liq. Chromatogr. 16, 1805–1817 (1993).

DOI: https://doi.org/10.1080/10826079308021688

M. Lobell, L. Molnár, G. M. Keserü, Recent advances in the prediction of blood-brain partitioning from molecular structure, J. Pharm. Sci.92, 360–370 (2003).

DOI: https://doi.org/10.1002/jps.10282

M. Malhotra, D. K. Majumdar, Permeation through cor-nea, Indian J. Exp. Biol. 39, 11–24 (2001).

DOI: http://hdl.handle.net/123456789/23624

J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, J. R. Grove, MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening, J. Pharm. Sci. 88, 28–33(1999).

DOI: https://doi.org/10.1021/js9803205

S. Kovačević, M. K. Banjac, S. Podunavac-Kuzmanović, N. Milošević, J. Ćurčić, J. Vulić, V. Šeregelj, N. Banjac, G. Ušćumlić, Chromatographic and computational screen-ing of anisotropic lipophilicity and pharmacokinetics of newlysynthesized 1-aryl-3-ethyl-3-methylsuccinimides, Comput. Biol. Chem. 84, Article number 107161 (2020).

DOI: https://doi.org/10.1016/j.compbiolchem.2019.107161

I. Ionut, B. Tiperciuc, O. Oniga, Lipophilicity Evaluation of Some N1-Arylidene-Thiosemicarbazones and 1,3,4-Thiadiazolines with Antimicrobial Activity, J. Chroma-togr. Sci. 55, 411–416 (2017).

DOI: https://doi.org/10.1093/chromsci/bmw195

G. Vastag, S. Apostolov, D. Mijin, L. Grbović, B. Kauri-nović, Chemometric study of chromatographic and com-putational bioactivity parameters of diphenylacetamides, J. Chemom. 33, e3091 (2019).

DOI: https://doi.org/10.1002/cem.3091

Downloads

Published

2021-05-11

How to Cite

Apostolov, S., & Vastag, G. (2021). Chromatographic parameters as tools for predicting the biological activity of azo derivatives. Macedonian Journal of Chemistry and Chemical Engineering, 40(1), 29–42. https://doi.org/10.20450/mjcce.2021.2045

Issue

Section

Analytical Chemistry