Optimization of electro-Fenton oxidation of carbonated soft drink industry wastewater using response surface methodology

Authors

  • Reza Davarnejad Arak University
  • Jamal Azizi Arak University
  • Amir Joodaki Arak University
  • Sepideh Mansoori University of Tehran

DOI:

https://doi.org/10.20450/mjcce.2020.2101

Keywords:

COD reduction, Electro-Fenton, Soft drink, Wastewater

Abstract

The immense volume of highly polluted organic wastewater continuously generated in the beverage industry urges the design of new types of wastewater treatment plants. This study aimed to evaluate the applicability of the electro-Fenton (EF) technique to reduce organic pollution of real effluent from a carbonated soft drink factory. The impact of various process variables like pH, time, current density, H2O2/Fe2+ molar ratio, and the volume ratio of H2O2/soft drink wastewater (SDW) was analyzed using response surface methodology (RSM). The observed responses were in good agreement with predicted values obtained through optimization. The optimum conditions showed a chemical oxygen demand (COD) removal efficiency of 73.07 %, pH of 4.14, time of 41.55 min, current density of 46.12 mA/cm2, H2O2/Fe2+ molar ratio of 0.9802, and H2O2/SDW volume fraction of 2.74 ml/l. The EF process was able to effectively diminish the organic pollution, reduce the residence time and, therefore, the operating costs.

References

E. Ait Hsine, A. Benhammou, M. Pons, Water resources management in soft drink industry-water use and wastewater generation, Environmental Technology, 26 (12), 1309–1316 (2005).

DOI: https://doi.org/10.1080/09593332608618605

A. Swain, N. Shukla, N. Remya, Treatment of wastewater from beverage/soft drink industry by microwave photolytic process, recent developments in waste management, Springer 2020, pp. 335–343.

DOI: https://doi.org/10.1007/978-981-15-0990-2_26

Y. Wang, L. Serventi, Sustainability of dairy and soy processing: a review on wastewater recycling, Journal of Cleaner Production, 237, 117821 (2019).

DOI: https://doi.org/10.1016/j.jclepro.2019.117821

F. Gholami, A. Zinatizadeh, S. Zinadini, T. McKay, L. Sibali, An innovative jet loop-airlift bioreactor for simultaneous removal of carbon and nitrogen from soft drink industrial wastewater: Process performance and kinetic evaluation, Environmental Technology & Innovation 100772 (2020).

DOI: https://doi.org/10.1016/j.eti.2020.100772

A. Asadi, A. A. Zinatizadeh, M. Van Loosdrecht, A novel continuous feed and intermittent discharge airlift bioreactor (CFIDAB) for enhanced simultaneous removal of carbon and nutrients from soft drink industrial wastewater, Chemical Engineering Journal, 292, 13–27 (2016). DOI: https://doi.org/10.1016/j.cej.2016.01.110

B. Saenz de Miera, A. S. Oliveira, J. Baeza, L. Calvo, J. Rodriguez, M. A. Gilarranz, Treatment and valorisation of fruit juice wastewater by aqueous phase reforming: Effect of pH, organic load and salinity, Journal of Cleaner Production, 252, 119849 (2020).

DOI: https://doi.org/10.1016/j.jclepro.2019.119849

N. Muhammad, M. Nafees, R. Hussain, M. H. Khan, S. Jehan, U. Ullah, Pollution and energy reduction strategy in soft drink industries, Environmental Science and Pollution Research, 25 (28), 28153–28159 (2018).

DOI: https://doi.org/10.1007/s11356-018-2861-x

R. Davarnejad, M. Mohammadi, A. F. Ismail, Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes: Statistical comparison, Journal of Water Process Engineering 3, 18–25 (2014).

DOI: https://doi.org/10.1016/j.jwpe.2014.08.002

I. Linares Hernández, C. Barrera Díaz, M. Valdés Cerecero, P. T. Almazán Sánchez, M. Castañeda Juárez, V. Lugo Lugo, Soft drink wastewater treatment by electrocoagulation–electrooxidation processes, Environ-mental Technology, 38(4), 433–442 (2017).

DOI: https://doi.org/10.1080/09593330.2016.1196740

N. Remya, A. Swain, Soft drink industry wastewater treatment in microwave photocatalytic system – Exploration of removal efficiency and degradation mechanism, Separation and Purification Technology, 210, 600–607 (2019).

DOI: https://doi.org/10.1016/j.seppur.2018.08.051

A. J. Expósito, J. M. Monteagudo, I. Díaz, A. Durán, Photo-Fenton degradation of a beverage industrial effluent: intensification with persulfate and the study of radicals, Chemical Engineering Journal, 306 1203–1211 (2016). DOI: https://doi.org/10.1016/j.cej.2016.08.048

A. Durán, J. Monteagudo, J. Gil, A. Expósito, I. San Martín, Solar-photo-Fenton treatment of wastewater from the beverage industry: Intensification with ferrioxalate, Chemical Engineering Journal, 270, 612–620 (2015).

DOI: https://doi.org/10.1016/j.cej.2015.02.069

P. Cao ,X. Quan, K. Zhao, S. Chen, H. Yu, J. Niu, Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis, Journal of Hazardous Materials, 382, 121102 (2020).

DOI: https://doi.org/10.1016/j.jhazmat.2019.121102

S. O. Ganiyu, M. Zhou, C. A. Martínez-Huitle, Hetero-geneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment, Applied Catalysis B: Environmental, 235, 103–129 (2018).

DOI: https://doi.org/10.1016/j.apcatb.2018.04.044

C. Bruguera-Casamada, R. M. Araujo, E. Brillas, I. Sirés, Advantages of electro-Fenton over electrocoagulation for disinfection of dairy wastewater, Chemical Engineering Journal, 376, 119975 (2019).

DOI: https://doi.org/10.1016/j.cej.2018.09.136

P. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299, 1–15 (2012).

DOI: https://doi.org/10.1016/j.desal.2012.05.011

K. Thirugnanasambandham, V. Sivakumar, K. Shine, Performance evaluation of chemical coagulation process to treat bagasse wastewater: modeling and optimization, Polish Journal of Chemical Technology, 18(1), 99–104 (2016). DOI: https://doi.org/10.1515/pjct-2016-0015

J. Meijide, M. Pazos, M. Á. Sanromán, Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation, Environmental Science and Pollution Research, 26(4), 3145–3156 (2019).

DOI: https://doi.org/10.1007/s11356-017-0403-6

X. Zhu, J. Tian, R. Liu, L. Chen, Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology, Separation and Purification Technology, 81, 444–450 (2011).

DOI: https://doi.org/10.1016/j.seppur.2011.08.023

M. Sadeghi, M. H. Mehdinejad, N. Mengelizadeh, Y. Mahdavi, H. Pourzamani, Y. Hajizadeh, M. R. Zare, Degradation of diclofenac by heterogeneous electro-Fenton process using magnetic single-walled carbon nanotubes as a catalyst, Journal of Water Process Engineering, 31, 100852 (2019).

DOI: https://doi.org/10.1016/j.jwpe.2019.100852

U. Kurt, O. Apaydin, M. T. Gonullu, Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process, Journal of hazardous materials, 143(1–2), 33–40 (2007).

DOI: https://doi.org/10.1016/j.jhazmat.2006.08.065

A. S. Ogbiye, D. O. Omole, K. D. Ade-Balogun, O. Onakunle, O. O. Elemile, Treatment of brewery waste-water using electro-Fenton and granulated activated carbon, Cogent Engineering, 5(1) ,1447224 (2018).

DOI: https://doi.org/10.1080/23311916.2018.1447224

R. Davarnejad, S. Nasiri, Slaughterhouse wastewater treatment using an advanced oxidation process: optimization study, Environmental Pollution, 223, 1–10 (2017).

DOI: https://doi.org/10.1016/j.envpol.2016.11.008

O. Can, COD removal from fruit-juice production wastewater by electrooxidation, electrocoagulation and electro-Fenton processes, Desalination and Water Treatment, 52(1–3), 65–73 (2014).

DOI: https://doi.org/10.1080/19443994.2013.781545

M. Panizza, M. A. Oturan, Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode, Electrochimica Acta, 56(20), 7084–7087 (2011).

DOI: https://doi.org/10.1016/j.electacta.2011.05.105

B. Hou, W. Ma, H. Han, P. Xu, H. Zhuang, S. Jia, K. Li, Optimization of electro-Fenton oxidation of biologically pretreated coal gasification wastewater by response surface methodology, Desalination and Water Treatment, 57(18), 8174–8182 (2016).

DOI: https://doi.org/10.1080/19443994.2015.1018330

M. Panizza, A. Barbucci, M. Delucchi, M. Carpanese, A. Giuliano, M. Cataldo-Hernández, G. Cerisola, Electro-Fenton degradation of anionic surfactants, Separation and Purification Technology, 118, 394–398 (2013).

DOI: https://doi.org/10.1016/j.seppur.2013.07.023

R. Davarnejad, M. Nikseresht, Dairy wastewater treatment using an electrochemical method: experimental and statistical study, Journal of Electroanalytical Chemistry, 775, 364–373 (2016).

DOI: https://doi.org/10.1016/j.jelechem.2016.06.016

K. Thirugnanasambandham, V. Sivakumar, Optimization of treatment of grey wastewater using Electro-Fenton technique – Modeling and validation, Process Safety and Environmental Protection, 95, 60–68 (2015).

DOI: https://doi.org/10.1016/j.psep.2015.02.001

G. Akkaya, H. Erkan, E. Sekman, S. Top, H. Karaman, M. Bilgili, G. Engin, Modeling and optimizing Fenton and electro-Fenton processes for dairy wastewater treatment using response surface methodology, Inter–national journal of environmental science and technology, 16(5), 192–207 (2019).

DOI: https://doi.org/10.1007/s13762-018-1846-0

M. M. Ghoneim, H. S. El-Desoky, N. M. Zidan, Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions, Desalination, 274(1–3), 22–30 (2011). DOI: https://doi.org/10.1016/j.desal.2011.01.062

F. Deng, O. Garcia-Rodriguez, H. Olvera-Vargas, S. Qiu, O. Lefebvre, J. Yang, Iron-foam as a heterogeneous catalyst in the presence of tripolyphosphate electrolyte for improving electro-Fenton oxidation capability, Electro–chimica Acta, 272, 176–183 (2018).

DOI: https://doi.org/10.1016/j.electacta.2018.03.160

M. Matošić, I. Prstec, H. K. Jakopović, I. Mijatović, Treatment of beverage production wastewater by membrane bioreactor, Desalination, 246(1–3), 285–293 (2009).

DOI: https://doi.org/10.1016/j.desal.2008.04.051

U. Austermann-Haun, K.-H. Rosenwinkel, Two examples of anaerobic pre-treatment of wastewater in the beverage industry, Water Science and Technology, 36(2–3), 311–319 (1997).

DOI: https://doi.org/10.2166/wst.1997.0546

M. García-Morales, G. Roa-Morales, C. Barrera-Díaz, P. Balderas-Hernández, Treatment of soft drink process wastewater by ozonation, ozonation-H2O2 and ozonation-coagulation processes, Journal of Environmental Science and Health, Part A 47(1), 22–30 (2012).

DOI: https://doi.org/10.1080/10934529.2012.629575

R. E. Victoria-Salinas, V. Martínez-Miranda, I. Linares-Hernández, G. Vázquez-Mejía, M. Castañeda-Juárez, P. T. Almazán-Sánchez, Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter, Journal of Environmental Science and Health, Part A, 54(7) 617–627 (2019).

DOI: https://doi.org/10.1080/10934529.2019.1579522

Downloads

Published

2020-10-27

How to Cite

Davarnejad, R., Azizi, J., Joodaki, A., & Mansoori, S. (2020). Optimization of electro-Fenton oxidation of carbonated soft drink industry wastewater using response surface methodology. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 129–137. https://doi.org/10.20450/mjcce.2020.2101

Issue

Section

Environmental Chemistry