Voltammetric quantification of a nonsteroidal anti-inflammatory agent diflunisal based on the enhancement effect of cationic surfactant on boron-doped diamond electrode

Authors

  • Ertuğrul Keskin Adiyaman University, Faculty of Pharmacy, Department of Analytical Chemistry http://orcid.org/0000-0001-5216-3520
  • Shabnam Allahverdiyeva Van Yüzüncü Yıl University, Faculty of Science, Department of Biochemistry
  • Amer Alali Van Yuzuncu Yil University, Faculty of Pharmacy, Department of Analytical Chemistry
  • Yavuz Yardım Van Yuzuncu Yil University, Faculty of Pharmacy, Department of Analytical Chemistry http://orcid.org/0000-0002-9587-096X

DOI:

https://doi.org/10.20450/mjcce.2021.2172

Keywords:

diflunisal, boron-doped diamond electrode, voltammetry, cationic surfactant, pharmaceutical formulation

Abstract

The present work describes a simple, fast, and inexpensive voltammetric method for diflunisal measurement using a non-modified boron-doped diamond (BDD) electrode. The oxidation of the agent was irreversible and presented a diffusion‐controlled process. The sensitivity of the square wave voltammetric measurements were significantly improved when the cationic surfactant, cetyltrimethylammonium bromide (CTAB), was present in the supporting electrolyte solution. Using square-wave mode, a linear response was obtained for diflunisal quantification in 0.1 mol L-1 phosphate buffer solution (pH 2.5) solution containing 5×10-5 mol L-1 CTAB at +1.07 V (vs. Ag/AgCl) (after 30 s accumulation under open-circuit conditions). Linearity was found for 0.05 to 2.0 μg mL-1 (2.0×10-7-8.0×10-6 mol L-1) with a detection limit 0.013 μg mL-1 (5.2×10-8 mol L-1). The developed approach could be used for the quantification of diflunisal in pharmaceutical formulations.

References

S. Fountoulaki, F. Perdih, I. Turel, D.P. Kessissoglou, G. Psomas, Non-steroidal anti-inflammatory drug diflunisal interacting with Cu(II). Structure and biological features, J. Inorg. Biochem., 105, 1645–1655 (2011) DOI: http://doi.org/10.1016/j.jinorgbio.2011.09.004.

S.J. Barkin, Management of chronic pain. Part II, Disease-a-Month., 42, 457–507 (1996) DOI: http://doi.org/10.1016/S0011-5029(96)90013-9.

R.A. Turner, J.P. Whipple, R.W. Shackleford, Diflunisal 500–750 mg versus Aspirin 2600–3900 mg in the Treatment of Rheumatoid Arthritis, Pharmacother. J. Hum. Pharmacol. Drug Ther., 4, 151–157 (1984) DOI: http://doi.org/10.1002/j.1875-9114.1984.tb03341.x.

K. McCormack, Non-steroidal anti-inflammatory drugs and spinal nociceptive processing, Pain., 59, 9–43 (1994) DOI: http://doi.org/10.1016/0304-3959(94)90045-0.

A.A.M. Wahbi, M.M. Mabrouk, M.S. Moneeb, A.H. Kamal, Simultaneous determination of the two non-steroidal anti-inflammatory drugs; diflunisal and naproxen in their tablets by chemometric spectrophotometry and HPLC, Pak. J. Pharm. Sci., 22, 8–17 (2009) DOI:

E.S. Lianidou, P.C. Ioannou, C.K. Polydorou, C.E. Efstathiou, Synchronous scanning second derivative spectrofluorimetry for the simultaneous determination of diflunisal and salicylic acid added to serum and urine as ternary complexes with terbium and EDTA, Anal. Chim. Acta., 320, 107–114 (1996) DOI: http://doi.org/10.1016/0003-2670(95)00517-X.

H.M. Maher, Simultaneous determination of naproxen and diflunisal using synchronous luminescence spectrometry, J. Fluoresc., 18, 909–917 (2008) DOI: http://doi.org/10.1007/s10895-008-0322-5.

H.M. Maher, Development and validation of a stability-indicating HPLC-dad method with ANN optimization for the determination of diflunisal and naproxen in pharmaceutical tablets, J. Liq. Chromatogr. Relat. Technol., 37, 634–652 (2014) DOI: http://doi.org/10.1080/10826076.2012.758134.

R.A. Shaalan, T.S. Belal, Validated stability-indicating HPLC-DAD method for the simultaneous determination of diclofenac sodium and diflunisal in their combined dosage form, Sci. Pharm., 81, 713–731 (2013) DOI: http://doi.org/10.3797/scipharm.1301-24.

A. Kot-Wasik, J. Dębska, A. Wasik, J. Namieśnik, Determination of non-steroidal anti-inflammatory drugs in natural waters using off-line and on-line SPE followed by LC coupled with DAD-MS, Chromatographia., 64, 13–21 (2006) DOI: http://doi.org/10.1365/s10337-006-0797-7.

D.S. Patel, N. Sharma, M.C. Patel, B.N. Patel, P.S. Shrivastav, M. Sanyal, Sensitive and selective determination of diflunisal in human plasma by LC-MS, J. Chromatogr. Sci., 51, 872–882 (2013) DOI: http://doi.org/10.1093/chromsci/bms181.

E. Wåhlin-Boll, B. Brantmark, A. Hanson, A. Melander, C. Nilsson, High-pressure liquid chromatographic determination of acetylsalicylic acid, salicylic acid, diflunisal, indomethacin, indoprofen and indobufen, Eur. J. Clin. Pharmacol., 20, 375–378 (1981) DOI: http://doi.org/10.1007/BF00615408.

R. Milofsky, E. Bauer, Capillary Electrophoresis with Post-Column Addition of Terbium and Sensitized Lanthanide-Ion Luminescence Detection for the Determination of Diflunisal and Salicylic Acid, HRC J. High Resolut. Chromatogr., 20, 638–642 (1997) DOI: http://doi.org/10.1002/jhrc.1240201204.

Y. Ding, C.D. Garcia, Determination of nonsteroidal anti-inflammatory drugs in serum by microchip capillary electrophoresis with electrochemical detection, Electroanalysis., 18, 2202–2209 (2006) DOI: http://doi.org/10.1002/elan.200603648.

F. Sayın, S. Kır, Analysis of diflunisal by electrochemical methods, J. Pharm. Biomed. Anal., 25, 153–163 (2001) DOI: http://doi.org/10.1016/S0731-7085(00)00481-7.

A.M. Beltagi, Utilization of a montmorillonite-Ca-modified carbon paste electrode for the stripping voltammetric determination of diflunisal in its pharmaceutical formulations and human blood, J. Appl. Electrochem., 39, 2375–2384 (2009) DOI: http://doi.org/10.1007/s10800-009-9924-0.

C. Tiribilli, R. Sokolová, S. Giannarelli, M. Valášek, On reduction of the drug diflunisal in non-aqueous media, Monatshefte Fur Chemie., 146, 807–812 (2015) DOI: http://doi.org/10.1007/s00706-014-1390-7.

B.D. Topal, S.A. Ozkan, B. Uslu, The Analytical Applications of Square Wave Voltammetry on Pharmaceutical Analysis, Open Chem. Biomed. Methods J., 3, 56–73 (2011) DOI: http://doi.org/10.2174/1875038901003010056.

V. Mirceski, R. Gulaboski, M. Lovric, I. Bogeski, R. Kappl, M. Hoth, Square-Wave Voltammetry: A Review on the Recent Progress, Electroanalysis., 25, 2411–2422 (2013) DOI: http://doi.org/10.1002/elan.201300369.

O.I. Lipskikh, E.I. Korotkova, Y.P. Khristunova, J. Barek, B. Kratochvil, Electrochimica Acta Sensors for voltammetric determination of food azo dyes - A critical review, Electrochim. Acta., 260, 974–985 (2018) DOI: http://doi.org/10.1016/j.electacta.2017.12.027.

F. Scholz, Voltammetric techniques of analysis: the essentials, ChemTexts., 1, 1–24 (2015) DOI: http://doi.org/10.1007/s40828-015-0016-y.

J. Xu, Y. Wang, S. Hu, Nanocomposites of graphene and graphene oxides : Synthesis , molecular functionalization and application in electrochemical sensors and biosensors . A review, Microchim. Acta., (2016) DOI: http://doi.org/10.1007/s00604-016-2007-0.

V. Mirceski, R. Gulaboski, Recent advances in square-wave voltammetry: A review, Maced. J. Chem. Chem. Eng., 33, 1–12 (2014) DOI: http://doi.org/http://dx.doi.org/10.20450/mjcce.2014.515.

M. Hanko, Ľ. Švorc, A. Planková, P. Mikuš, Novel electrochemical strategy for determination of 6-mercaptopurine using anodically pretreated boron-doped diamond electrode, J. Electroanal. Chem., 840, 295–304 (2019) DOI: http://doi.org/10.1016/j.jelechem.2019.03.067.

Ľ. Švorc, K. Kalcher, Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: Simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode, Sensors Actuators, B Chem., 194, 332–342 (2014) DOI: http://doi.org/10.1016/j.snb.2013.12.104.

S. Allahverdiyeva, P. Talay Pınar, E. Keskin, O. Yunusoğlu, Y. Yardım, Z. Şentürk, Adsorptive stripping voltammetric determination of higenamine on a boron- doped diamond electrode improved by the use of an anionic surfactant, Sensors Actuators B. Chem., 303, 127174 (2020) DOI: http://doi.org/10.1016/j.snb.2019.127174.

Ľ. Švorc, K. Borovská, K. Cinková, D.M. Stanković, A. Planková, Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode, Electrochim. Acta., 251, 621–630 (2017) DOI: http://doi.org/10.1016/j.electacta.2017.08.077.

D.F. Pereira, E.R. Santana, J. V. Piovesan, A. Spinelli, A novel electrochemical strategy for determination of vitamin B12 by Co(I/II) redox pair monitoring with boron-doped diamond electrode, Diam. Relat. Mater., 105, 107793 (2020) DOI: http://doi.org/10.1016/j.diamond.2020.107793.

P. Samiec, Ľ. Švorc, D.M. Stanković, M. Vojs, M. Marton, Z. Navrátilová, Mercury-free and modification-free electroanalytical approach towards bromazepam and alprazolam sensing: A facile and efficient assay for their quantification in pharmaceuticals using boron-doped diamond electrodes, Sensors Actuators, B Chem., 245, 963–971 (2017) DOI: http://doi.org/10.1016/j.snb.2017.02.023.

F. Dönmez, Y. Yardım, Z. Şentürk, Electroanalytical determination of enrofloxacin based on the enhancement effect of the anionic surfactant at anodically pretreated boron-doped diamond electrode, Diam. Relat. Mater., 84, 95–102 (2018) DOI: http://doi.org/10.1016/j.diamond.2018.03.013.

Ľ. Švorc, J. Sochr, M. Rievaj, P. Tomčík, D. Bustin, Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode, Bioelectrochemistry., 88, 36–41 (2012) DOI: http://doi.org/10.1016/j.bioelechem.2012.04.004.

R. Trouillon, Y. Einaga, M.A.M. Gijs, Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling, Electrochem. Commun., 47, 92–95 (2014) DOI: http://doi.org/10.1016/j.elecom.2014.07.028.

M. Mishra, P. Muthuprasanna, K. Surya, P. Sobhita, I.A. Satish, I.S. Chandiran, G. Arunachalam, S. Shalini, Basics and Potential Applications of Surfactants - A Review, Int. J. PharmTech Res., 1, 1354–1365 (2009) DOI:

J.R. Kirchhoff, E. Deutsch, W.R. Heineman, Factors Influencing Electroanalytical Measurements in Aqueous Surfactant Media, Anal. Lett., 22, 1323–1340 (1989) DOI: http://doi.org/10.1080/00032718908051408.

S. Allahverdiyeva, E. Keskin, P. Talay Pınar, Y. Yardım, Z. Şentürk, First Electroanalytical Methodology for the Determination of Hordenine in Dietary Supplements using a Boron-doped, Electroanalysis., 31, 2283–2289 (2019) DOI: http://doi.org/10.1002/elan.201900365.

A.A. Abdullah, Y. Yardım, Z. Şentürk, The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catechol-containing flavonoid quercetin in apple juice, Talanta., 187, 156–164 (2018) DOI: http://doi.org/10.1016/j.talanta.2018.05.016.

B.C. Lourencao, R.F. Brocenschi, R.A. Medeiros, O. Fatibello-Filho, R.C. Rocha-Filho, Analytical Applications of Electrochemically Pretreated Boron-Doped Diamond Electrodes, ChemElectroChem., 7, 1291–1311 (2020) DOI: http://doi.org/10.1002/celc.202000050.

Downloads

Published

2021-05-11

How to Cite

Keskin, E., Allahverdiyeva, S., Alali, A., & Yardım, Y. (2021). Voltammetric quantification of a nonsteroidal anti-inflammatory agent diflunisal based on the enhancement effect of cationic surfactant on boron-doped diamond electrode. Macedonian Journal of Chemistry and Chemical Engineering, 40(1), 11–20. https://doi.org/10.20450/mjcce.2021.2172

Issue

Section

Electrochemistry