Traditional white brined cheese as a delivery vehicle for probiotic bacterium Lactobacillus casei

Authors

  • Margita Dabevska-Kostoska Public Health Institution – Center for Public Health, Tetovo
  • Elena Velickova Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje
  • Slobodanka Kuzmanova Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje
  • Eleonora Winkelhausen Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril & Methodius University, Skopje

DOI:

https://doi.org/10.20450/mjcce.2015.519

Keywords:

The traditional white brined cow cheese was tested as a delivery vehicle for probiotic bacteria. The cheese was manufactured from pasteurized cow’s milk at industrial scale, at the same time in three batches, each of 1000 l milk. Two different initial con

Abstract

The traditional white brined cow cheese was tested as a delivery vehicle for probiotic bacteria. The cheese was manufactured from pasteurized cow’s milk at an industrial scale, at the same time in three batches, each of 1000 liters milk. Two different initial concentrations of the probiotic bacterium Lactobacillus casei (3.86·107 and 5.81·107cfu g–1) were used. The cheese had relatively short period of ripening (40 days), large percentage of fat (~52% d.m.) and suitable pH values (~4.5) for the survival of probiotics. At the end of the ripening, the probiotic counts were 1.74·108and 3.72·108cfu g–1, respectively. There was no significant difference in most of the quality parameters at the p < 0.05 level between the two probiotic cheeses. Nitrogen fractions and fat content were the key components influencing the overall quality of the cheese samples. The principal component analysis of the sensory attributes demonstrated that the flavor contributed the most to the overall acceptance of all types of cheeses.

References

FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. A joint FAO and WHO expert consultation report. Accessed Feb. 2012. ftp://ftp.fao.org/docrep/fao/meeting/009/y6398e.pdf.

S. Cunningham-Rundles, S. Ahrne, S. Bengmark, R. Johann-Liang, F. Marshall, L. Metakis, C., Califano, A. M. Dunn, C. Grassey, G. Hinds, J. Cervia, Probiotics and immune response. Am. J. Gastroenterol., 95, S22–S25 (2000).

R. D. Rolfe, The role of probiotic cultures in the control of gastrointestinal health. J. Nutr., 130, 396S–402S (2000).

M. L. Cross, Immunoregulation by probiotic lacto¬bacilli: pro-Th1 signals and their relevance to human health, Clin. Appl. Immunol. Rev., 3, 115–125 (2002).

V. Rosenfeldt, K. F. Michaelsen, M. Jakobsen, C. N. Larsen, P. L. Moller, P. Pedersen, M. Tvede, H. Weyrehter, N. H. Valerius, A. Paerregaard, Effect of probiotic Lactobacillus strains in young children hospitalized with acute diarrhea. Pediatr. Infect. Dis. J., 21, 411–416 (2002).

E. Isolauri, Probiotics for infectious diarrhoea, Gut, 52, 436–437(2003).

T. Botić, T. D. Klingberg, H. Weingartl, A. Cencič, A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria, Int. J. Food Microbiol., 115, 227–234 (2007).

D. Dimitrovski, A. Cencič, E. Winkelhausen, T. Langerholc, Lactobacillus plantarum extracellular metabolites: In vitro assessment of probiotic effects on normal and cancerogenic human cells. Int. Dairy J. 39, 293–300 (2014).

K. Orrhage, E. Sillerstrom, J. A., Gustafsson, C. E. Nord, J. Rafter, Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria, Mutat. Res.- Fund. Mol. M., 311, 239–248 (1994).

K. Kailasapathy, J. Chin, Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp., Immunol. Cell Biol., 78, 80–88 J. (2000).

A. K. Anal, H. Singh, Recent advances in micro-encapsulation of probiotics for industrial ap-plications and targeted delivery, Trends Food Sci. Tech., 18, 240–251 (2007).

A. Hernandez-Mendoza, H. S., Garcia, J. L. Steele, Screening of Lactobacillus casei strains for their ability to bind Aflatoxin B1, Food Chem. Toxicol., 47, 1064–1068 (2009).

B. Kabak, E. F. A. Brandon, I. Var, M. Blokland, A. J. A. M. Sips, Effects of probiotic bacteria on the bioaccessibility of aflatoxin B1 and ochratoxin A using an in vitro digestion model under fed conditions. J. Environ. Sci. Health, Part B, 44, 472–480 (2009).

A. Hernandez-Mendoza, D. L. Guzman-de-Peña, A. F. Gonzalez, B. Vallejo, H. S. Garcia, In vivo assessment of the potential protective effect of Lactobacillus casei Shirota against aflatoxin B1, Dairy Sci. Techn., 9, 729–740 (2010).

J. C. Serrano-Niño, A. Cavazos-Garduño, A. Hernandez-Mendoza, B. Applegate, M. G. Ferruzzi, M. F. San Martin-González, H. S. García, Assessment of probiotic strains ability to reduce the bioaccessibility of aflatoxin M1 in artificially contaminated milk using an in vitro digestive model. Food Control, 31, 202–207 (2013).

A. Donnet-Hughes, F. Rochat, P., Serrant, J. M. Aeschlimann, E. J. Schiffrin, Modulation of nonspecific mechanisms of defence by lactic acid bacteria: effective dose. J. Dairy Sci., 82, 863–869 (1999).

J. J. Rafter, Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: cancer, Brit. J. Nutr., 88, S219–S224 (2002).

M. D. Sharp, D. J. McMahon, J. R. Broadbent, Comparative evaluation of yogurt and low-fat cheddar cheese as delivery media for probiotic Lactobacillus casei, J. Food Sci., 73, M375-–M377 (2008).

I. Pitino, C. L. Randazzo, G. Mandalarib, A. Lo Curto, R. M. Faulks, Y. Le Marc, C. Bisignano, C., Caggia, M. S. J. Wickham, Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract. Food Microbiol., 27, 1121–1127 (2010).

K. M. K. Kebary, S. A., Hussein, R. M. Badawi, Improving viability of bifidobacteria and their effect on frozen milk, Egyp. J. Dairy Sci., 26, 319–337 (1998).

K. Kailasapathy, Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Iss. Intestinal Microb., 2, 39–48 (2002).

A. B. Martin-Diana, C. Janer, C. Pelaez, T. Requena, Development of a fermented goat’s milk containing probiotic bacteria. Int. Dairy J., 13, 827–833 (2003).

C. Stanton, R. P. Ross, G. F. Fitzgerald, D. Van Sinderen, Fermented functional foods based on probiotics and their biogenic metabolites, Curr. Opin. Biotechnol., 16, 198–203 (2005).

E. R. Farnworth, I. Mainville, M. P. Desjardins, N. Gardner, I. Fliss, C. Champagne, Growth of probiotic bacteria and bifidobacteria in a soy yogurt formulation. Int. J. Food Microbiol., 116, 174–181 (2007).

K. Kailasapathy, I. Harmstorf, M. Phillips, Survival of Lactobacillus acidophilus and Bifido¬bacterium animalis ssp. lactis in stirred fruit yogurts, LWT-Food Sci.Technol.-Leb., 41, 1317–1322 (2008).

C. Senaka Ranadheera, C. A. Evans, M. C. Adams, S. K. Baines, Probiotic viability and physico-chemical and sensory properties of plain and stirred fruit yogurts made from goat’s milk, Food Chem., 135, 1411–1418 (2012).

G. Gardiner, R. P. Ross, J. K. Collins, G. Fitzgerald, G. Stanton, Development of a probiotic cheddar cheese containing human–derived Lacto¬bacillus paracasei strains. Appl. Environ. Microbiol., 64, 2192–2199 (1998).

M. Playne, Researching, developing and com-mercializing probiotic cheese, Aust. Dairy Foods, Feb., 28–30 (2002).

S. M. Phillip, K. Kailasapathy, L. Tran, Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium spp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int. J. Food Microbiol., 108, 276–280 (2006).

L. Ong, N. P. Shah, Influence of probiotic Lactobacillus acidophilus and L. helveticus on proteolysis, organic acid profiles, and ACE-inhibitory activity of cheddar cheeses ripened at 4, 8, and 12oC, J. Food Sci., 73, M111–M120 (2008).

H. K. Wang, C. Dong, Y. F. Chen, L. M. Cui, H. P. Zhang, A new probiotic cheddar cheese with high ACE-inhibitory activity and γ-aminobutyric acid content produced with koumiss-derived Lactobacillus casei Zhang, Food Technol. Biotech., 48, 62–70 (2010).

M. Yilmaztekin, B. H. Özer, F. Atasoy, Survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in white brined cheese, Int. J. Food Sci. Nutr., 55, 53–60 (2004).

M. Dabevska-Kostoska, S. Kuzmanova, E. Winkelhausen, A traditional brined white cheese enriched with probiotic bacteria Lactobacillus casei, Proceedings of the 1st International Symposium on Traditional Foods from Adriatic to Caucasus, Tekirdağ, Turkey, 2010, pp. 213–215.

P. Burns, F. Cuffia, M. Milesi, G. Vinderola, C. Meinardi, N., Sabbag, N. E. Hynes, Technological and probiotic role of adjunct cultures of non-starter lactobacilli in soft cheeses, Food Microbiol., 30, 45–50 (2012).

M. Dabevska-Kostoska, E. Velickova, S. Kuzmanova, E. Winkelhausen, White brined cheese as a delivery medium for probiotic bacteria. Proceedings of the 6th Central European Congress on Food -CEFood, Novi Sad, Serbia, 2012, pp. 1142–1147.

R. Mahmoudi, H. Tajik, A. Ehsani, A. Farshid, P. Zare, M. Hadian, Effects of Mentha longifolia L. essential oil on viability and cellular ultrastructure of Lactobacillus casei during ripening of probiotic Feta cheese, Int. J. Dairy Technol., 66, 77–82 (2013).

C. V. Bergamini, E. R. Hynes, A. Quiberoni, V. B. Suáres, C. A. Zalazar, Probiotic bacteria as adjunct starters: influence of the addition methodology on their survival in semi–hard Argentinean cheese, Food Res. Int., 38, 597–604 (2005).

A. Gomes da Cruz, F. C. A. Buriti, C. H. Batista de Souza, J. A. Fonseca Faria, S. M. Isay Saad, Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci. Tech., 20, 344–354 (2009).

A. A. Hayaloglu, Comparison of different single-strain starter cultures for their effects on ripening and grading of Beyaz cheese, Int. J. Food Sci. Tech., 42, 930–938 (2007).

Rulebook on the microbiological safety of foods (2008). Official Gazette of the R. Macedonia Nr. 78.

Rulebook on the chemical composition of pasteurized milk (2011). Official Gazette of the R. Macedonia Nr. 96.

C. V. Bergamini, E. R. Hynes, C. A. Zalazar, Influence of probiotic bacteria on the proteolysis of a semi–hard cheese, Int. Dairy J., 18, 856–866 (2006).

A. A. Hayaloglu, I. Karabulut, Primary and secondary proteolysis in eleven Turkish cheese varieties, Int. J. Food Prop. 16, 1663–1675 (2013).

L. Abadía-García, A. Cardador, S. T. Martín del Campo, S. M. Arvízu, E. Castaño-Tostado, C. Regalado-González, B. García-Almendarez, S. L. Amaya-Llano, Influence of probiotic strains added to cottage cheese on generation of potentially antioxidant peptides, anti-listerial activity, and survival of probiotic microorganisms in stimulated gastrointestinal conditions, Int. Dairy J., 33, 184–190 (2013).

M. Millette, F. M. Luquet, M. Lacroix, In vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk. Lett. Appl. Microbiol., 44, 314–319 (2007).

T. K. Singh, M. A. Drake, K. R. Cadwallader, Flavor of cheddar cheese: A chemical and sensory perspective, Compr. Rev. Food Sci. F., 2, 166–189 (2003).

Downloads

Published

2015-11-12

How to Cite

Dabevska-Kostoska, M., Velickova, E., Kuzmanova, S., & Winkelhausen, E. (2015). Traditional white brined cheese as a delivery vehicle for probiotic bacterium Lactobacillus casei. Macedonian Journal of Chemistry and Chemical Engineering, 34(2), 343–350. https://doi.org/10.20450/mjcce.2015.519

Issue

Section

Biotechnology

Most read articles by the same author(s)