The correlation between structure and β-nucleation efficiency of Ba, Sr, Ca and Mg pimelates in isotactic polypropylene

Authors

  • Aco Janevski Faculty of Technology, University Goce Delčev, Krste Misirkov bb, 2000 Štip
  • Gordana Bogoeva-Gaceva Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Ruger Boskovic 16, 1000 Skopje
  • Viktor Stefov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, P.O. Box 162, 1001 Skopje
  • Metodija Najdoski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, P.O. Box 162, 1001 Skopje

DOI:

https://doi.org/10.20450/mjcce.2015.635

Keywords:

polypropylene, polymorphism, beta-nucleators, pimelates

Abstract

The pimelates of the earth-alkaline elements and pimelic acid have been synthesized and studied. All prepared pimelates are crystallohydrates and Ba and Sr pimelates are isotypic. The obtained compounds have been characterized using infrared spectroscopy and X-ray diffraction, and it was found that, near and above the melting temperature of polypropylene, the pimelates of Ba and Sr are crystalline, whereas the ones of Ca and Mg are amorphous. The nucleation activity of these pimelates has been studied in the process of crystallization of polypropylene in non-isothermal conditions and followed by differential scanning calorimetry (at cooling rate V= 1–20 K min–1). It was found that their nucleation activity, even at concentration of 0.1 %, differs considerably with regards to the cooling rate, and they induce different polymorphic composition of the polymer. The nucleation activity was mostly exhibited by Ca pimelate, and when it was used the content of the β crystalline phase (Uβ) in polypropylene ranged from 0.90 to 0.94, depending on the cooling  rate, compared to 0.18–0.35 when Mg pimelate was used. In the polymer crystallized by using Ba and Sr pimelate as nucleators, Uβ ranged from 0.47 to 0.77. Based on the theoretical concepts for nucleation activity of solid substrates, an attempt was made to correlate the structurаl features of the synthesized pimelates with their β-nucleation activity in the process of  nonisothermal crystallization of iPP.

References

J. Varga, Supermolecular structure of isotactic polypropylene, J. Mater. Sci, 27, 2557–2573 (1992).

M. Naiki, T. Kikawa, Y. Endo, K. Nozaki, T. Yama-moto, T. Hara, Crystal ordering of alpha phase isotac-tic polypropylene, Polymer, 42, 5471–54773 (2000).

B. Lotz, J. C. Wittmann, A. J. Lovinger, Structure and morphology of poly(propylenes): A molecular analysis, Polymer, 37, 4979–4992 (1996).

H. Awaya, Morphology of different types of isotactic polypropylene spherulites crystallized from melt, Polymer, 29, 591–596 (1988).

D. L. Dorset, M. P. McCourt, S. Kopp; M. Schumacher, T. Okihara, B. Lotz, Isotactic polypropylene, β-phase: a study in frustration, Polymer, 39, 6331–6337 (1998).

K. Busse, J. Kressler, R. D. Maier, J. Scherble, Tailoring of the alpha, beta, and gamma-modification in isotactic polypropene and propene/ethene random copolymers, Macromolecules, 33, 8775–8780 (2000).

D. R. Norton, A. Keller, The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene, Polymer, 26, 704–716 (1985).

B. Lotz, J. C. Wittmann, The molecular origin of lamellar branching in the α (monoclinic) form of isotactic polypropylene, J. Polym. Sci. Part B: Polym. Phys., 24, 1541–1558 (1986).

Z. G. Wang, R. A. Phillips, B. S. Hsiao, Morphology development during isothermal crystallization. I. Isotactic and atactic polypropylene blends, J. Polym. Sci. Part B: Polym. Phys., 38, 2580–2590 (2000).

S. Bruckner, S. V. Meille, V. Petraccone, B. Pirozzi, Polymorphism in isotactic polypropylene, Prog. Polym. Sci., 16, 361–404 (1991).

J. Varga, J. Karger-Kocsis, Rules of supermolecular structure formation in sheared isotactic polypropylene melts, J. Polym. Sci. Part B: Polymer Phys. Ed., 34, 657–670 (1996).

R. H. Somani, B. S. Hsiao, A. Nogales, H. Fruitwala, S. Srinivas, A. H. Tsou, Structure Development during Shear Flow Induced Crystallization of i-PP: In Situ Wide-Angle X-ray Diffraction Study, Macromolecules, 34, 5902–5909 (2001).

Y. H. Chen, Y. M. Mao, Z. M. Li, B. S. Hsiao, Competitive Growth of α- and β-Crystals in β-Nucleated Isotactic Polypropylene under Shear Flow, Macromolecules, 43, 6760–6771 (2010).

J. Varga, G. W. Ehrenstein, Formation of β-modification of isotactic polypropylene in its late stage of crystallization, Polymer, 37, 5959–5963 (1996).

A. J. Lovinger, J. O. Chua, C. C. Gryte, Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient, J. Polym. Sci. Polym. Phys. Ed., 15, 641–656 (1977).

J. Zhang, K. Shen, S. Na, Q. Fu, Vibration-induced change of crystal structure in isotactic polypropylene and its improved mechanical properties, J. Polym. Sci. Part. B: Polym. Phys., 42, 2385–2390 (2004).

J. Varga, β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application, J. Macromol. Sci. Part B: Phys., 41, 1121–1171 (2002).

J. X. Li, W. L. Cheung, Conversion of growth and recrystallisation of β-phase in doped iPP, Polymer, 40, 2085–2088 (1999).

C. Grein, Toughness of Neat Rubber Modified and Filled β-nucleated Polypropylene: From Fundamentals to Applications, Adv. Polym. Sci., 188, 43–104 (2005).

R. Cermak, M. Obadal, P. Ponizil, M. Polaskova, K. Stoklasa, A. Lengalova, Injection-moulded α- and β-polypropylenes: I. Structure vs. processing parameters, Eur. Polym. J., 41, 1838–1845 (2006).

J. Kotek, M. Raab, J. Baldrian, W. Grellmann, The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene, J. Appl. Polym. Sci., 85 1174–1184 (2002).

Q. Dou, Effect of Metallic Salts of Pimelic Acid and Crystallization Temperatures on the Formation of β-Crystalline Form in Isotactic Poly(propylene), J. Macromol. Sci. Part B: Phys., 46, 1063–1080 (2007).

Q. Dou, A Comparison of the Effects of Calcium Glutarate and Pimelate on the Formation of β-Crystalline Form in Isotactic Poly(propylene), J. Macromol. Sci. Part B: Phys., 47, 127–138 (2008).

J. Varga, I. Mudra, G. W. Ehrenstein, Crystallization and melting of β-nucleated isotactic Polypropylene, J. Therm. Anal. Cal., 56, 1047–1057 (1999).

J. Varga, I. Mudra, G. W. Ehrenstein, Highly active thermally stable β-nucleating agents for isotactic poly-propylene, J. Appl. Polym. Sci., 74, 2357–2368 (1999).

J. Karger-Kocsis, E. Moos, I. Mudra, J. Varga, Effects of molecular weight on the perforation impact behavior of injection-molded plaques of α- and β-phase isotactic polypropylene, J. Macromol. Sci. Part B: Phys., 38, 647–662 (1999).

G. J. Vancso, L. G. M. Beekmans, R. Pearce, D. Trifonova, J. Varga, From microns to nanometers: Morphology development in semicrystalline polymers by scanning force microscopy, J. Macromol. Sci. Part B: Phys., 38, 491–503 (1999).

D. Trifonova, J. Varga, G. W. Ehrenstein, G. J. Vancso, Features of the hedritic morphology of β-isotactic polypropylene studied by atomic force microscopy, J. Polym. Sci. Part B: Polym. Phys., 38, 672–681 (2000).

A. Janevski, G. Bogoeva-Gaceva, J. Serb. Chem. Soc. (2014), doi:10.2298/JSC140324055J

Q. Dou, H. D. Li, Effect of Metallic Salts of Glutaric Acid on the Formation of β-crystalline Form in Isotactic Polypropylene, J. Elastomers and Plastics, 41, 509–522 (2009).

J. Varga, Crystallization, Melting and Supermolecular Structure of Isotactic Polypropylene. in: J. Karger-Kocsis (Ed.), Polypropylene: Structure, Blends and Composites, Chapman & Hall, London, Vol. 1, pp. 56–115, 1995.

J. C. Wittmann, B. Lotz, Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents, J. Polym. Sci. Part B: Polym. Phys., 19, 1837–1851 (1981).

J. C. Wittmann, B. Lotz, Epitaxial crystallization of polymers on organic and polymeric substrates, Prog. Polym. Sci., 15, 909–948 (1990).

S. Yoshimoto, T. Ueda, K. Yamanaka, A. Kawaguchi, E. Tobita, T. Haruna, Epitaxial act of sodium 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate on isotactic polypropylene, Polymer, 42, 9627–9631 (2001).

V. Mathieu, A. Thierry, B. Lotz, J. C. Wittmann,” Multiple” nucleation of the (010) contact face of isotactic polypropylene, α phase, Polymer, 41, 7241–72553 (2000).

W. Stocker, M. Schumacher, S. Graff, Epitaxial Crystallization and AFM Investigation of a Frustrated Polymer Structure: Isotactic Poly(propylene), β Phase, Macromolecules, 31, 807–814 (1998).

T. Kawai, R. Iijima, Y. Yamamoto, T. Kimura, Crystal orientation of β-phase isotactic polypropylene induced by magnetic orientation of N,N-dicyclohexyl-2,6-naphthalene dicarboxamide, Polymer, 43, 7301–7306 (2002).

H. G. Haubruge, R. Daussin, A. M. Jonas, R. Legras, J. C. Wittmann, B. Lotz, Epitaxial Nucleation of Poly(ethylene terephthalate) by Talc: Structure at the Lattice and Lamellar Scales, Macromolecules, 36, 4452-4456 (2003).

S. Yan, S. Petermann, Nucleation and overgrowth of PE on PTFE/iPP interfaces, J. Polym. Sci. Part B: Polym. Phys., 38, 80–83 (2000).

Y. Sun, H. Li, Y. Huang, E. Chen, Z. Gan, S. Yan, Epitaxial crystallization of poly(butylene adipate) on highly oriented isotactic polypropylene thin film, Polymer, 47, 2455–2459 (2006).

Y. Shi, Z. Xin, The Correlation between Crystal Struc-ture and Nucleation Efficiency of a Lithium (I) Complex on Isotactic Polypropylene, J. Appl. Polym. Sci., 125, 2963–2969 (2012).

M. Grzesiak, A. Rafalska-Lasocha, W. Lasocha, Synthesis and XRPD studies of new barium dicarboxylates, Powder Diffraction., 26, 53–65 (2011).

M. Grzesiak, W. Nitek, A. R. Lasocha, W. Lasocha, Investigations of new barium dicarboxylates, Z. Kristallogr., 227, 629–634 (2012).

M. Grzesiak-Nowak, W. Nitek, A. Rafalska-Lasocha, W. Lasocha, Synthesis and investigations of new strontium dicarboxylates, Z. Kristallogr., 228, 590–597 (2013).

G. Shi, B. Huang, J. Zhang, Enthalpy of fusion and equilibrium melting point of the β-form of polypropylene, Macromol. Chem. Rap. Comm., 5, 573–578 (1984).

M. Avella, E. Martuscelli, C. Sellit, E. Garagnani, Crystallization behaviour and mechanical properties of polypropylene-based composites, J. Mater. Sci., 22, 3185–3193 (1987).

B. Monasse, J. M. Haudin, Thermal dependence of nucleation and growth rate in polypropylene by non isothermal calorimetry, Coll. Polym. Sci., 264, 117–122 (1986).

S. Brandup, E. H. Imergut, Polymer Handbook, Interscience, New York, USA, 1975, p. 24.

M. R. Meng, Q. Dou, Effect of Filler Treatment on Crystallization, Morphology and Mechanical Properties of Polypropylene/Calcium Carbonate Composites, J. Macromol. Sci. Part B: Physics, 48, 213–225 (2009).

M. Liu, B. Guo, M. Du, F. Chen, D. Jia, Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene, Polymer, 50, 3022–3030 (2009).

A. Turner-Jones, J. M. Aizlewood, D. R. Beckett, Crystalline forms of isotactic polypropylene, Macromol. Chem. Phys., 75, 134–158 (1964).

GRAMS ANALYSTTM for PE-2000 FT-IR, Version 3.01B Level II, Galactic Industries, 1994.

GRAMS/32 Spectral Notebase, Version 4.10, Galactic Industries Corporation, 1996.

F. A. Cotton, The infrared spectra of Transition Metal Complexes, in J. Lewis and R.G. Wilkins (Eds.), Mod-ern Coordination Chemistry, Interscience, New York, 1960.

Spectroscopic Properties of Inorganic and Organome-tallic Compounds, Specialist Periodical Reports, Chem. Soc., London, Vol. 1, p. 199, Vol. 2, p. 333, 1968, 1969.

G. B. Deacon, R. J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev., 33, 227–250 (1980).

K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination Compounds, Part B, Fifth Edition, Wiley, New York, p. 59, 2005.

X. Li, K. Hu, M. Ji, Y. Huang, G. Zhou, Calcium dicarboxylates nucleation of β-polypropylene, J. Appl. Polym. Sci., 86, 633–638 (2002).

T. Masuda, T. Takahashi, T. Higashimura, J. Chem. Soc., Chem. Commun., 1297–1298 (1982).

Z. Guan, Z. Lin, K. Mai, Monetaria moneta as a novel β-nucleating agent for isotactic polypropylene, Compos. Sci. Technol., 87, 58–63 (2013).

P. Andrew, W. Z. Peng, E. Graham, Polystyrene as a versatile nucleating agent for polypropylene, Polymer, 51, 1599–1607 (2010).

Downloads

Published

2015-05-05

How to Cite

Janevski, A., Bogoeva-Gaceva, G., Stefov, V., & Najdoski, M. (2015). The correlation between structure and β-nucleation efficiency of Ba, Sr, Ca and Mg pimelates in isotactic polypropylene. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 189–199. https://doi.org/10.20450/mjcce.2015.635

Issue

Section

Polymers

Most read articles by the same author(s)

> >>