New convenient vapor pressure-temperature correlation for some aliphatic hydrocarbons
DOI:
https://doi.org/10.20450/mjcce.2013.105Keywords:
Vapor pressure, vapor pressure- temperature equations, aliphatic hydrocarbonsAbstract
New empirical equations for correlating temperature dependence of vapor pressure for C6-C20 aliphatic hydrocarbons are proposed:
ln(VP) = k1·T/(k2+T)
where, VP – vapor pressure, T – temperature, k1 – asymptotic maximum vapor pressure, and k2 – temperature at which the vapor pressure has half of its maximum value.
Descriptors k1, k2 and k1/k2 have physical meaning and are unique for a given liquid. This “uniqueness” can be exploited for quantitative description of vapor pressure-temperature curve. The equation given above can be transformed algebraically into other convenient forms for plotting experimental data such as:
T/ln(VP) = intercept + slope·T
k1 = 1/slope; k2 = intercept/slope
These derived descriptors can be utilized for evaluation and comparison of properties of different liquids and liquid mixtures and can serve as additional parameters for analysis of liquid hydrocarbon-based fuels for internal combustion engines.
References
Antoine C. Tensions des vapeurs; nouvelle relation entre les tensions et les temperatures. Comptes Rendus des Séances de l'Académie des Sciences 1888; 107: 681–684, 778–780, 836–837
Wagner W. New vapour pressure measurements for argon and nitrogen and an new method for establishing rational vapour pressure equations, Cryogenics 1973; 13 (8): 470–482
Xiang HW, Tan LC. A new vapor-pressure equation. Int. J. Thermophys. 1994; 15: 711–727.
Poling BE, Prausnitz JM, O’Connell JP. The Properties of Gases and Liquids, McGraw-Hill, New York, 2001, pp. 7.1–7.13.
Iglesias-Silva GA, Holste JC, Eubank PT, Marsh KN, Hall KR. A vapor pressure equation from extended asymptotic behavior. AIChE J. 1987; 33: 1550–1556.
. Shaver RD, Robinson RL, Gasem KAM. A Framework for the Prediction of Saturation Properties: Vapor Pressures. Fluid Phase Equilibr. 1991; 64: 141–163.
Iglesias-Silva GA, Miller RC, Ceballos AD, Hall KR, Holste JC. Accurate vapor pressure equation for refrigerants. Fluid Phase Equilibr. 1995; 111: 203–212.
Ledanois JM, Colina CM, Santos JW, Gonza´lez-Mendizabal D, Olivera-Fuentes C. New Expressions for the Vapor Pressure of Pure Components Constructed on Characteristic Points. Ind. Eng. Chem. Res. 1997; 36: 2505–2508.
Korsten H. Internally Consistent Prediction of vapour Pressure and Related Properties. Ind. Eng. Chem. Res. 2000; 39: 813–820.
Frenkel M, Iglesias-Silva GA, Mannan MS, Hall KR. Fitting vapor pressure – temperature data: simplicity and unintended consequences. Fluid Phase Equilibr. 2001; 183–184: 217–228.
Xiang HW. Vapor Pressures from a Corresponding-States Principle for a Wide Range of Polar Molecular Substances. Int. J. Thermophys. 2001; 22: 919–932.
Voutsas E, Lampadariou M, Magoulas K, Tassios D. Prediction of Vapor Pressures of Pure Compounds from Knowledge of the Normal Boiling Point Temperature. Fluid Phase Equilibr. 2002; 198: 81–93.
Queimada AJ, Stenby EH, Marrucho IM, Coutinho JAP. A New Corresponding States Model for the Estimation of Thermophysical Properties of Long-Chain n-alkanes.
Fluid Phase Equilibr. 2003; 212: 303–314.
Mejbri K, Bellagi A. Corresponding states correlation for the saturated vapor pressure of pure fluids. Thermochim. Acta 2005; 436: 140–194.
Wu JT, Liu ZG. An Accurate Vapor Pressure Equation with Good Extrapolation Characteristics Int. J. Thermophys. 2005; 26: 767–784.
Rogdakis ED, Lolos PA. Simple generalized vapour pressure- and boiling point correlation for refrigerants. Int. J. Refrig. 2006; 29: 632–634.
Godavarthy SS, Robinson RL, Gasem KAM. SVRC-QSPR Model for Predicting Vapor Pressures of Pure Fluids. Fluid Phase Equilibr. 2006; 246: 39–51.
Zwolinski, B.J., Wilhoit, R.C. (1971) Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related Compounds. API-44 TRC Publication No. 101, Texas A. & M. University, Evans Press, Fort Worth, Texas.
STATGRAPHICS Centurion XVI, StatPoint Technologies, Inc. (2010).