Theoretical model of infrared spectra of hydrogen bonds in molecular crystals of 2-thiopheneacetic acid: Fermi resonance and Davdov coupling effects.
DOI:
https://doi.org/10.20450/mjcce.2016.1081Keywords:
Theoretical Physics, Spectroscopy, Quantum PhysicsAbstract
A quantum theoretical approach, within the adiabatic approximation and taking into account a strong non-adiabatic correction via the resonant exchange between the fast mode excited states of the two moieties of the dimer. The intrinsic anharmonicity of the low-frequency mode through a Morse potential, direct and indirect damping, and a selection rule breaking mechanism for forbidden transitions, is applied to reproduce the υX-H IR line shape of cyclic dimers of moderately H-bonded species in the crystalline phase. The results are used to gain an insight into the experimental spectral line shapes obtained by the transmission method. This approach fits satisfactorily the experimental line shape of 2-thiopheneacetic acid and predicts their evolution with isotopic substitution. Numerical calculations show that mixing of all these effects allows one to reproduce the main features of the experimental IR line shapes.
References
D. Hadzi, H. W. Thompson, Eds. Hydrogen Bonding, Pergamon: London, 1959.
W. C. Hamilton, J. A. Ibers, Hydrogen Bonding in Sol-ids, W. A. Benjamin: New York, 1968.
P. Schuster, G. Zundel, C. Sandorfy, Eds. The Hydrogen Bond. Recent Developments in Theory and Experiments; Vol. 1–3, North-Holland: Amsterdam, 1976.
D. Zanuy, C. Aleman, J. Phys. Chem. B 112 (2008) 3222. DNA-conducting polymer complexes: a compu-tational study of the hydrogen bond between building blocks.DOI: 10.1021/jp711010t
V. V. Prabhu, L. Young, K. W. Awati, W. Zhuang, E. W. Prohofsky," Defect-mediated hydrogen-bond melting in B-DNA polymers", Phys. Rev. B 41 (1990).
DOI: 10.1103/PhysRevB.41.7839
D. Hadzi (Ed.), Theoretical Treatments of Hydrogen Bonding, J. Wiley, Chichester, 1997.
P. Gilli, G. Gilli, The Nature of the Hydrogen Bond, Oxford University Press, Oxford, 2009.
Y. Maréchal, A. Witkowski, Infrared Spectra of H-Bonded Systems, J. Chem. Phys. 48 (1968) 3697.
DOI:10.1063/1.1669673
A. Witkowski, M. Wójcik, Infrared spectra of hydrogen bond a general theoretical model, Chem. Phys. 1 (1973) 9. DOI:10.1016/0301-0104(73)87017-X
N. Issaoui, N. Rekik, B. Oujia, M. J. Wójcik, Theoretical infrared line shapes of H-bonds within the strong an-harmonic coupling theory and Fermi resonances effects, Int. J. Quant. Chem, 110 (2010) 2583.
DOI: 10.1002/qua.22395.
N. Issaoui, N. Rekik, B. Oujia, M. J. Wójcik, Anhar-monic effects on theoretical IR line shapes of medium strong H(D) bonds, Int. J. Quant. Chem, 109 (2009) 483. DOI: 10.1002/qua.21839
P. Blaise, M. J. Wójcik, O. Henri-Rousseau, Theoretical Interpretation of the Line Shape of the Gaseous Acetic Acid Dimer, J. Chem. Phys. 122 (2005) 064306. DOI:10.1063/1.1847491
M. Z. Brela, J. Stare, G. Pirc, M. Sollner Dolenc, M. Boczar, M.J. Wójcik and J. Mavri, Car-Parrinello Simulation of the Vibrational Spectrum of a Medium Strong Hydrogen Bond by Two-Dimensional Quantiza-tion of the Nuclear Motion: Application to 2-Hydroxy-5-Nitrobenzamide, J. Phys. Chem. B 116 (2012) 4510. DOI: 10.1021/jp2094559
N. Issaoui, H. Ghalla, B. Oujia, A Theoretical model for polarized infrared spectra of crystals of 2-naphthyl acetic acid in the OH-stretching region J. Appl. Spectro.. 80 (2013) 15. doi:10.1007/s10812-013-9714-7
S. Detoni, D. Hadzi, Hydroxyl bands in the infra-red spectra of organophosphoric and phosphinic acids, Spectrochim. Acta 20 (1964) 949.
DOI:10.1016/0371-1951(64)80095-3
N. Issaoui, H. Ghalla, B. Oujia, Theoretical study of hydrogen and deuterium bond in glutaric acid crystal dimer, Int. J. Quant. Chem. 112 (2012) 1006.
DOI: 10.1002/qua.23085
H. Ghalla, N. Issaoui, B. Oujia, Theoretical study of the polarized infrared spectra of the hydrogen bond in 2-furoic acid crystal dimer, Int. J. Quant. Chem, 112 (2012) 1373. DOI: 10.1002/qua.23117
L. González, O. Mó, M. Yáñez, J. Elguero, Very strong hydrogen bonds in neutral molecules: the phosphinic acid dimers, J. Chem. Phys. 109 (1998) 2685.
DOI: 10.1063/1.476868
A. S. Davydov, Theory of Molecular Excitons, McGraw Hill, New York, 1962.
H. Winston, The Electronic Energy Levels of Molecular Crystals, J. Chem. Phys. 19 (1951) 156.
DOI:10.1063/1.1748150
S. Bratoz, D. Hadzi, Infrared Spectra of Molecules with Hydrogen Bonds, J. Chem. Phys. 27 (1957) 991.
DOI:10.1063/1.1743982
D. Chamma, O. Henry-Rousseau, IR spectral density of weak H-bonded complexes involving damped Fermi resonances. II. Numerical experiments and physical dis-cussion, Chem. Phys. 229 (1998) 51.
DOI:10.1016/S0301-0104(97)00361-3
M. P. Lisitsa, N. E. Ralko, A. M. Yaremko, Exciton splitting and Fermi resonance in solid solutions, Phys. Lett., A 48 (1974) 241.
DOI:10.1016/0375-9601(74)90486-1
H. T. Flakus, N. Rekik, A. Jarczyk, Polarized IR Spectra of the Hydrogen Bond in 2-Thiopheneacetic Acid and 2-Thiopheneacrylic Acid Crystals: H/D Isotopic and Temperature Effects, J. Phys. Chem. A, 116 (2012) 2117. DOI: 10.1021/jp210950n
R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Japan. 12, (1957) 570. DOI:10.1143/JPSJ.12.570
R. Kubo, in: Lectures in theoretical physics I, W. E. Brittin and L. G. Dunham (Eds.), Interscience, Boulder 1958.
N. Rosch, M. Ratner, Model for the Effects of a Con-densed Phase on the Infrared Spectra of Hydrogen Bonded Systems, J. Chem. Phys. 61, (1974) 3344. DOI:10.1063/1.1682497
A. Novak, Hydrogen Bonding in Solids Correlation of Spectroscopic and Crystallographic Data Structure and Bonding 18 (1974) 177.
I. Olovsson, P.-G. Jonsson, in: The hydrogen bond, P. Scheuster, G. Zundel, C. Sandorfy (Eds.), Amsterdam 1976.
G. Hofacker, Y. Marechal, M. Ratner, in: P. Schuster, G. Zundel, C. Sandorfy (Eds.), The Hydrogen Bond, North-Holland Publ. Co, Amsterdam, 1976
M. El-A. Benmalti, D. Chamma, P. Blaise, O. H. Rous-seau, Theoretical Interpretation of the Infrared Lineshape of Gaseous Propynoic and Acrylic Acid Dimers, J. Mol. Struct, 785 (2006) 27.
doi:10.1016/j.molstruc.2005.09.036
H. T. Flakus, On the Vibrational Transition Selection Rules for the Centrosymmetric Hydrogen-Bonded Dimeric Systems, J. Mol. Struct. (Theochem), 187 (1989) 35. DOI:10.1016/0166-1280(89)85148-6
K. Belhayara, D. Chamma, O Henri-Rousseau. Infrared spectra of weak H-bonds: Fermi resonances and intrinsic anharmonicity of the H-bond bridge, J. Mol. Struct. 648 (2003) 93. DOI:10.1016/S0022-2860(02)00618-X
N. Rekik, F. A. Al-Agel, H. T. Flakus, Davydov cou-pling as a factor influencing the H-bond IR signature: Computational study of the IR spectra of 3-thiopheneacrylic acid crystal, Chem. Phys. Lett. 647 (2016) 107. DOI:10.1016/j.cplett.2016.01.042
H. T. Flakus, A. Miros, “Infrared Spectra of the Hydro-gen Bonded Glutaric Acid Crystals: Polarization and Temperature Effects” J. Mol. Struct. 484 (1999) 103. doi.org/10.1016/S0022-2860(98)00907-7
H. T. Flakus, M. Jabłonska, Study of Hydrogen Bond Polarized IR Spectra of Cinnamic Acid Crystals, J. Mol. Struct. 707 (2004) 97.
DOI:10.1016/j.molstruc.2004.06.032
H. T. Flakus, A. Miros, P.G. Jones, Influence of mo-lecular electronic properties on the IR spectra of dimeric hydrogen bond systems: polarized spectra of 2-hydroxybenzothiazole and 2-mercaptobenzothiazole crystals, J. Mol. Struct. 604 (2002) 29.
DOI:10.1016/S0022-2860(01)00620-2
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.