Adsorption/desorption and biofunctional properties of oleuropein loaded on different types of silk fibroin matrices

Oguz Bayraktar, Ali Bora Balta, Guldemet Basal Bayraktar


The objective of this study was to investigate the adsorption/desorption behavior of oleuropein on different types of silk fibroin matrices including silk fibroin microfibers (MF), regenerated silk fibroin (RSF), and silk fibroin nanofibers (NF). Nanofibers with an average diameter of ranging between 24 and 326 nm were successfully prepared using the electrospinning technique. The effects of the silk fibroin concentration, the voltage applied and the distance between needle tip and collector plate on the morphology of the NF were investigated. The adsorption capacities of MF, RSF and NF were determined as 104.92, 163.07 and 228.34 mg oleuropein per gram of material, respectively. The percentage of initially adsorbed oleuropein that was desorbed was 86.08, 91.29 and 96.67% for MF, RSF and NF, respectively.

NF and RSF discs loaded with oleuropein were subjected to disc diffusion assays to determine their antibacterial activity against test microorganisms Staphylococcus epidermidis (Gram +) and Escherichia coli (Gram – ). The results showed that both biomaterials possessed antibacterial properties after loading with oleuropein. Wound scratch assays using oleuropein released from NF revealed an enhancement of cell migration, indicating a wound healing property of the material.

In conclusion, the NF can be utilized as a biofunctional polymeric material with better performance for the adsorption and desorption of oleuropein compared with MF and RSF.


Nanofibers; silk fibroin; electrospinning; oleuropein; bioactivity

Full Text:



S. S. Silva, D. Maniglio, A. Motta, J. F. Mano, R. L. Reis, C. Migliaresi, Genipin-modified silk-fibroin nanometric nets, Macromol. Biosci. 8, 766–774 (2008).


A. M. Jordan, V. Viswanath, S. E. Kim, J. K. Pokorskia, L. T. J. Korley, Processing and surface modification of polymer nanofibers for biological scaffolds: A review, J. Mater. Chem. B 4, 5958–5974 (2016).


C. Burger, B. Hsiao, B. Chu, Nanofibrous materials and their applications, Annual Review of Materials Research 33, 333–368 (2006).


F. Jian, N. Haitao, L. Tong, W. Xungai, Applications of electrospun nanofibers, Chinese Science Bulletin 53, 2265–2286 (2008).


A. B. Balta, Development of natural compound-loaded nanofıbers by electrospinning, MS Thesis, İzmir Institute of Technology (2010).

G. Dogan, G. Basal, O. Bayraktar, F. Ozyildiz, A. Uzel, I. Erdogan, Bioactive sheath/core nanofibers containing olive leaf extract, Microsc. Res. Techniq. 79, 38–49 (2016). []

I. Erdogan, M. Demir, O. Bayraktar, Olive leaf extract as a crosslinking agent for the preparation of electrospun zein fibers, J. Appl. Polym. Sci. 132, 41338–41347 (2015). []

K. Bailey, Potential applications of silk fibroin as a biomaterial, Thesis, Ontario, Canada: University of Waterloo (2013).

G. Liu, X. Huang, Y. Wang, Y. Zhang, X. Wang, Thermal transport in single silkworm silks and the behavior under stretching, Soft Matter. 8, 9792–9799 (2012). []

A. Nagano, H. Sato, Y. Tanioka, Y. Nakazawa, D. Knight, T. Asakura, Characterization of a Ca binding-amphipathic silk-like protein and peptide with the sequence (Glu)8(Ala-Gly-Ser-Gly-Ala-Gly)4 with poten-tial for bone repair, Soft Matter. 8, 741–748 (2012).


Y. Zhang, T. Jiang, Y. Zheng, P. Zhou, Interference of EGCG on the Zn(II)-induced conformational transition of silk fibroin as a model protein related to neurodegenerative diseases, Soft Matter. 8, 5543–5549 (2012). []

L. Yu, Y. Feng, Q. Li, X. Hao, W. Liu, W. Zhou, C. Shi, X. Ren, W. Zhang, PLGA/SF blend scaffolds modified with plasmid complexes for enhancing proliferation of en-dothelial cells, React. Funct. Polym. 91–92, 19–27 (2015). []

F. Galeotti, A. Andicsova, S. Yunus, C. Botta, Precise surface patterning of silk fibroin films by breath figures, Soft Matter. 8, 4815–4821 (2012).


T. Yucel, M. L. Lovett, D. L. Kaplan, Silk-based bio-materials for sustained drug delivery, J. Control. Release 190, 381–397 (2014).


E. Wenk, H. P. Merkle, L. Meinel, Silk fibroin as a vehicle for drug delivery applications, J. Control. Release 150, 128–141 (2011).


W. K. Son, J. H. Youk, W. H. Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles, Carbohydr. Polym. 65, 430–434 (2006).


J. An, H. Zhang, J. Zhang, Y. Zhao, X. Yuan, Preparation and antibacterial activity of electrospun chitosan/poly (ethyleneoxide) membranes containing silver nano¬particles, Colloid. Polym. Sci. 287, 1425–1434 (2009). []

H. S. Mason, H. Warzecha, T. Mor, J. Arntzen, Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine, Trends Mol. Med. 8, 324–329 (2002).

[ (02)02360-2]

J. Sun, Y. Chu, X. Wu, R.H. Liu, Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50, 7449–7454 (2002).


A. N. Sudjana, C. D’Orazio, V. Ryan, N. Ng. J. Rasool, N. Islam, T. V. Riley, K. A. Hammer, Antimicrobial activity of commercial olea europaea (olive) leaf extract, Int. J. Antimicrob. Agents 33, 461–463 (2008).


C. Chen, C. Chuanbao, M. Xilan, T. Yin, Z. Hesun, Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method, Polymer 47, 6322–6327 (2006).


K. H. Kim, L. Jeong, H. N. Park, S. Y. Shin, W. H. Park, S. C. Lee, T. I. Kim, Y. J. Park, Y. J. Seol, Y. M. Lee, Y. Ku, I. C. Rhyu, S. B. Han, C. P. Chung, Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration, J Biotech. 120, 327–339 (2005). []

S. Li, H. Wu, X. D. Hu, C.Q. Tu, F. X. Pei, G. L. Wang, W. Lin, H. S. Fan, Preparation of electrospun PLGA-silk fibroin nanofibersbased nerve conduits and evaluation in vivo, Artif. Cells Blood Substitut. Biotechnol. 40, 171–178 (2012).


Q. Wang, J. Xiong, H. Zhang, N. Li, J. Xie, G. Liu, Preparation and properties of PBS-SF core-shell composite ultrafine fibrous membranes by coaxial electrospinning, J Acta Materiea Compositae Sinica 28, 88–93 (2011).

Y. Hang, Y. Zhang, Y. Jin, H. Shao, X. Hu, Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning, Int. J. Biol. Macromol. 51, 980–986 (2012). []

S. Shao, L. Li, G. Yang, J. Li, C. Luo, T. Gong, S. Zhou, Controlled green tea polyphenols release from electro¬spun PCL/MWCNTs composite nanofibers, Int. J. Pharma. 421, 310–320 (2011).


G. Jin , M. P. Prabhakaran, D. Kai, S. K. Annamalai, K. D. Arunachalam, S. Ramakrishna, Tissue engineered plant extracts as nanofibrous wound dressing, Biomaterials 34, 724–734 (2013).


E. Altiok, D. Baycin, O. Bayraktar, S. Ulku, Isolation of polyphenols from the extracts of olive leaves (olea europaea l.) by adsorption on silk fibroin, Sep. Pur. Tech. 62, 342–248 (2008).


D. Baycin, E. Altiok, S. Ulku, O. Bayraktar, Adsorption of olive leaf (olea europaea l.) antioxidants on silk fibroin, J. Agric. Food Chem. 55, 1127–1236 (2007).


Ö. Malay, O. Bayraktar, A. Batıgün, Complex coacervationof silk fibroin and hyaluronic acid, Int. J. Biol. Macromol. 40, 387–393 (2007).


H. Fong, I. Chun, D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer 40, 4585–4592 (1999). [ (99)00068-3]

A. Sohrabi, P. M. Shaibani, T. Thundat, The Effect of applied electric field on the diameter and size distribution of electrospun nylon6 nanofibers, Scanning 35, 183–188 (2013). []



  • There are currently no refbacks.

Copyright (c) 2017 Oguz Bayraktar, Ali Bora Balta, Guldemet Basal Bayraktar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.