Cover Image

Quantum chemical studies, spectroscopic analysis and molecular structure investigation of 4-Chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoic acid

Balamurugan Natarajan

Abstract


In this study, the FTIR, FT-Raman and UV-visible Spectra of furosemide molecule, C12H11ClN2O5S (with named, 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoic acid), were recorded experimentally and theoretically. The optimized geometrical structure, harmonic vibration frequencies, and chemical shifts were computed using a hybrid-DFT (B3LYP) method and 6-31G(d,p) as the basis set. The complete assignments of fundamental vibrations were performed on the basis of the experimental results and Total Energy Distribution (TED) of the vibrational modes. The first order hyperpolarizability and relative properties of furosemide were calculated. The UV-Visible spectrum of the compound was recorded in the range 200–400 nm and the electronic properties, such as HOMO and LUMO energies, were determined by Time-Dependent DFT approach. Furthermore, Mulliken population analysis and thermodynamic properties were performed using B3LYP/6-31G(d,p) level for the furosemide compound.


Keywords


DFT, TED, UV-Vis, HOMO-LUMO

Full Text:

PDF

References


F. O. Simsek, M. S Kaynak, N. Sanil & S. Sahin, Deter-mination of amlodipine and furosemide with newly de-veloped and validated RP-HPLC method in commercially available tablet dosage forms, Hacettepe University Jour-nal of the Faculty of Pharmacy, 32(2), 145–158 (2012).

C. T. Supuran, A. Scozzafava, Carbonic anhydrase in-hibitors, Curr. Med. Chem., Immunol., Endocrine Meta-bolic Agents, 1, 61–97 (2001).

DOI: 10.2174/1568013013359131

C. T. Supuran, A. Scozzafava, A. Casini, Carbonic anhy-drase inhibitors, Med. Res. Rev., 23, 146–189 (2003). DOI: 10.1002/med.10025

C. T. Supuran, A. Scozzafava, Applications of carbonic anhydrase inhibitors and activators in therapy, Expert Opin. Ther. Patents, 12, 217–242 (2002).

DOI.org/10.1517/13543776.12.2.217

J. Niessen, U. Schoder, M. Rosenbaum, F.Scholz, Fluor-inated polyanilines as superior materials for electrocatalyt-ic anodes in bacterial fuel cells, Electrochemistry Com-munications, 3, 571–575 (2004).

DOI.org/10.1016/j.elecom.2004.04.006

N. Sundaraganesan, J. Karpagam, S. Sebastian, J. P. Cornard, The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analy-sis of 2,4-dichloroaniline by ab initio HF and density functional methods, Spectrochimica Acta Part A: Molecu-lar and Biomolecular Spectroscopy, 73, 1119–1122 (2009). DOI.org/10.1016/j.saa.2009.01.007

M. Karabacak, D. Karagoz, M. Kurt, Experimental (FT-IR and FT-Raman spectra) and theoretical (ab initio HF, DFT) study of 2-chloro-5-methylaniline, Journal of Mo-lecular Structure, 892, 25–31 (2008).

DOI.org/10.1016/j.molstruc.2008.04.054

A. Altun, K. Golcuk, M. Kumru, Structure and vibration-al spectra of p-methylaniline: Hartree-Fock, MP2 and density functional theory studies, Journal of Molecular Structure: THEOCHEM, 637, 155–169 (2003). DOI.org/10.1016/S0166-1280(03)00531-1

M. Govindarajan, M. Karabacak, S. Periandy, D. Tanuj, Spectroscopic (FT-IR, FT-Raman, UV and NMR) inves-tigation and NLO, HOMO–LUMO, NBO analysis of or-ganic 2,4,5-trichloroaniline, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 231–245 (2012). DOI.org/10.1016/j.saa.2012.06.014

M. Karabacak, D. Karagoz, M. Kurt, FT-IR, FT-Raman vibrational spectra and molecular structure investigation of 2-chloro-4-methylaniline: A combined experimental and theoretical study, Spectrochimica Acta Part A: Mo-lecular and Biomolecular Spectroscopy, 72, 1076–1083 (2009). DOI.org/10.1016/j.saa.2008.12.047

P. Wojciechowski, K. Helios, D. Michalska, Vib. Spectr., 57, 126–134 (2011).

H. Wang, B. Liu, J. Wan, J. Xu, X. Zheng, Excited-state structural dynamics and vibronic coupling of 1,3-dithiole-2-thione—resonance Raman spectroscopy and density functional theory calculation study, J. Raman Spectrosc, 40, 992–997 (2009). DOI: 10.1002/jrs.2216

H. Wang, J. Xu, J. Wan, Y. Zheno, X. Zheng, Excited state structural dynamics of tetra(4-aminophenyl)por¬phine in the condensed phase: resonance Raman spectroscopy and density functional theory calculation study, J. Phys Chem. B, 114, 3623–3632 (2010).

DOI: 10.1021/jp1000978

Gaussian Inc., Gaussian 09 Program, Gaussian Inc., Wallingford, 2009.

H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 3, 214–218 (1982). DOI: 10.1002/jcc.540030212

J. Baker, A. A. Jarzecki, P. Pulay, Direct scaling of primitive valence force constants: An alternative approach to scaled quantum mechanical force fields, J. Phys. Chem., 102 A, 1412–1424 (1998).

DOI: 10.1021/jp980038m

P. Pulay, J. Baker, K. Wolinski, Reply to the comments on Efficient calculation of canonical MP2 energies' by A. Kohn and C. Hattig, Chem. Phys. Lett., 358, 354–356 (2002). DOI.org/10.1016/S0009-2614(02)00610-3

F. Weinhold, Gauss view, J. Am. Chem. Phys. Soc., 102, 7211 (1980).

J. V. Prasad, S. S. Rai, S. N. Thakuk, Overtone spec-troscopy of benzene derivatives using thermal lensing, Chem. Phys. Lett. 164 (6), 629–634 (1989).

DOI.org/10.1016/0009-2614(89)85272-8

K. M. Gough, B. R. Henry, Carbon-hydrogen stretching overtone spectra of nitrobenzene and its deuterated deriva-tives. Assignment of the ortho carbon-hydrogen bond, J. Phys. Chem.,87, 3804–3805 (1983).

DOI: 10.1021/j100243a003

M. K. Ahmed, B. R. Henry, Gas-phase overtone spectral investigation of structurally and conformationally none-quivalent carbon-hydrogen bonds in trimethylbenzenes, J. Phys. Chem. 90, 1737–1739 (1986).

DOI: 10.1021/j100400a002

M. S. Dewar, P. J. Grisdale, J. Am. Chem. Soc. 84, 3539 (1962).

B. G. Johnson, P. M. Gill, J. A. Pople, The performance of a family of density functional methods, J. Chem. Phys., 98, 5612 (1993). DOI.org/10.1063/1.464906

B. T. Gowda et al., ActaCryst. E63, 2967 (2007).

B. M. S. Alvareza, M. I. M. Valdeza, E. H. Cultin, C. O. D. Vedova, Spectroscopic and theoretical studies of sul-famoil fluoride, FSO2NH2 and N-(fluorosulfonyl) im-idosulfuryl fluoride, FSO2NS(O)F2, J.Mol.Struct., 657, 291–300 (2003).

DOI.org/10.1016/S0022-2860(03)00407-1

M. F. Erben, C. O. D. Vedova, R. Boese, H. Willner, C. Leibold, H. Oberhammer, Trifluoromethyl chlorosul-fonate, CF3OSO2Cl: Gas phase and crystal structure, con-formation and vibrational analysis studied by experi-mental and theoretical methods, Inorganic chemistry, 42, 7297–7303 (2003). DOI: 10.1021/ic034531a

M. E. Tuttolomondo, P. E. Arganaraz, E. L. Varetti, S. A. Hayes, D. A. Wann, H. E. Robertson, D. W.N. Rankin, A. B. Altabef, Gas-phase structure and vibrational prop-erties of trifluoromethyl trifluoromethanesulfonate, CF3SO2OCF3, Eur. J. Inorg. Chem., 10, 1381–1389 (2007). DOI: 10.1002/ejic.200600940

M. Silverstein, G. C. Basseler, C. Morill, Spectrometric identification of organic compounds, Wiley, Newyork, 1981.

L. J. Bellamy, The Infrared Spectra of Complex Mole-cules, vol.2, Chapman and Hall, London, 1980.

R. M. S. Alvareza, E. H. Cutin, C. O. D. Vedova, Vibra-tional studies of sulfamoil chloride (ClSO2NH2), J. Mol. Struct. 440, 213–219 (1998).

DOI.org/10.1016/S0022-2860(97)00260-3

B. T. Gowda, K. Jyothi, J. D. D. Souza, Journal for Na-ture Research, 57a (2002) 967–973.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Charac-teristic Frequencies of Organic Molecules, Academic Press, Boston, MA, 1974.

M. Silverstein, G. C. Basseler, C. Morill, Spectrometric identification of organic compounds, Wiley, New York, 1981.

G. Varsanyi, Assignments of vibrational spectra of 700 benzene derivatives, Wiley, New York, 1974, pp. 280.

A. Altun, K. Golcuk, M. Kumru, Theoretical and experi-mental studies of the vibrational spectra of m-methylaniline, J. Mol. Struct. (Theochem.), 625, 17–24 (2003). DOI.org/10.1016/S0166-1280(02)00698-X

N. Sundaraganesan, H. Saleem, S. Mohan, Vibrational spectra, assignments and normal coordinate analysis of 3-aminobenzyl alcohol, Spectrochim. Acta A, 59, 2511–2517 (2003). DOI.org/10.1016/S1386-1425(03)00037-4

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman spectroscopy, Academic Press, New York, 1990.

S. Muthu, E. I. Paulraj, Solid State Sci., 14, 476–487 (2012).

D. Sajan, J. Binoy, B. Pradeep, K. V. Krishna, V. B. Kartha, I. H. Joe, V. S. Jayakumar, Spectrochim. Acta A 60, 173–180 (2004).

S. Muthu, N. R. Sheela, S. Sampathkrishnan, Mol. Sim-ul., 37, 1276–1288 (2011).

K. B. Wiberg, A. Sharke, Spectrochim. Acta A, 29, 583–594 (1973).

V. Krishnakumar, N. Surumbarkuzhali, S. Muthunatesan, Spectrochim. Acta A, 71, 1810–1813 (2009).

M. Karabacak, M. Cinar, Z. Unal, M. Kurt, FT-IR, UV spectroscopic and DFT quantum chemical study on the molecular conformation, vibrational and electronic transi-tions of 2-aminoterephthalic acid, J.Mol.Struct., 982 22–27 (2010).

DOI.org/10.1016/j.molstruc.2010.07.033

M. Karabacak, M. Cinar, M. Kurt, DFT based computa-tional study on the molecular conformation, NMR chemi-cal shifts and vibrational transitions for N-(2-methylphenyl) methanesulfonamide and N-(3-methylphenyl) methanesulfonamide, J. Mol. Struct, 968, 108–114 (2010).

DOI.org/10.1016/j.molstruc.2010.01.033

K. L. Jayalaksmi, B. T. Gowda, Synthetic, infrared and NMR (1H and 13C) spectral studies of n-(substituted phe-nyl)-methanesulphonamides, Journal for Nature Re-search, 59a, 491–500 (2004).

DOI: 0932–0784 / 04 / 0700–049

N. I. Dodoff, Vib. Spectrosc. 4(3), 5–9 (2000).

Y. Sert, C. Cirak, F. Ucun, Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calcula-tions, Spectrochim. Acta A, 107, 248–255 (2013).

DOI.org/10.1016/j.saa.2013.01.046

B. Lakshmaiah, G. R. Rao, Vibrational analysis of substi-tuted anisoles. I–Vibrational spectra and normal coordi-nate analysis of some fluoro and chloro compounds, J. RamanSpectrosc., 20, 439-448 (1989).

DOI: 10.1002/jrs.1250200709

J. A. Fanitan, I. Iweibo, R. A. Oderinde. J. Raman Spec-trosc. 11, 6 (1998).

V. K. Rastogi, M. Alcolea Palafox, R. Tomar, 2-Amino-3,5-dichlorobenzonitrile: DFT calculations in the mono-mer and dimer forms, FT-IR and FT-Raman spectra, mo-lecular geometry, atomic charges and thermodynamical parameters, Spectrochim Acta A, 110, 458-470 (2013). DOI.org/10.1016/j.saa.2013.03.026

G. Varsanyi, Assignments of Vibrational Spectra of Ben-zene Derivatives, Academic Press, New York, 1969.

T. Shimanouchi, Y. Kalkiuti, I. Gamo, Stability and burn-ing velocities of laminar carbon monoxide‐air flames at pressures up to 93 atmospheres, J. Chem. Phys. 25, 1241–1245 (1956). DOI.org/10.1063/1.1743186

V. Balachadran, V. Karpagam, A. Lakshmi, Conforma-tional stability, theoretical and experimental vibrational spectral analysis of 2,4,6-trihydroxybenzaldehyde, J. Mol. Struct. 1021, 13–21 (2012).

DOI.org/10.1016/j.molstruc.2012.04.070

D. Jacquemin, J. Preat, E. A. Perpete, A TD-DFT study of the absorption spectra of fast dye salts, Chem. Phys. Lett. 410, 254–259 (2005).

DOI.org/10.1016/j.cplett.2005.05.081

D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J. M. Andre, E. A. Perpete, Theoretical investigation of substi-tuted anthraquinone dyes, J. Chem. Phys. 121 1736–1746 (2004). DOI: 10.1063/1.1764497

M. Cossi, V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys., 115, 4708 (2001). DOI.org/10.1063/1.1394921

K. Fukui, T. Yonezewa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys, 20, 722 (1952). DOI.org/10.1063/1.1700523

C. H. Choi, M. Kertesz, Conformational Information from Vibrational Spectra of Styrene, trans-Stilbene, and cis-Stilbene, J. Phys. Chem. 101 (20), 3823–3831 (1997). DOI: 10.1021/jp970620v

S. Gunasekeran, R. A. Balaji, S. Kumeresan, G. Anand, S. Srinivasan, Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-methoxytryptamine, Can. J. Anal. Sci. Spectrosc, 53, 149–160 (2008).

D. F. Lewis, C. Loannides, D. V. Pake, Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure—activity relation-ships, Xenobiotica, 24, 401–408 (1994).

DOI.org/10.3109/00498259409043243

L. Padmaja, C. Ravikumar, D. Sajan, I. H. Joe, V. S. Jayakumar, G. R. Pettit, O. F. Nielson, Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anti-cancer drug combretastatin–A2, J. Raman Spectrosc, 40, 419–428 (2009). DOI: 10.1002/jrs.2145

C. Ravikumar, I. H. Joe, V. S. Jayakumar, Charge trans-fer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: a vi-brational approach, Chem. Phys. Lett. 460, 552–558 (2008). DOI.org/10.1016/j.cplett.2008.06.047

P. Politzer & J. S. Murray, The fundamental nature and role of the electrostatic potential in atoms and molecules, Theor. Chem. Acc., 108, 134–142 (2002).

DOI.org/10.1007/s00214-002-0363-9

R. G. Pearson, Chemical Hardness, John Wiley-VCH, Weinheim, New York , 1997.

R. G. Parr, V. Laszlo, Szentpály & S. Liu, Electrophilicity Index, J. Am. Chem. Soc, 121, 1922–1924 (1999). DOI: 10.1021/ja983494x

J. Padmanabhan, R. Parthasarathi, V. Subramanian & P.K. Chattaraj, Electrophilicity-based charge transfer de-scriptor, J. Phys. Chem, A, 111, 1358–1361 (2007). DOI: 10.1021/jp0649549

R. S. Mulliken, Electronic population analysis on LCAO–MO molecular wave functions. I, J. Chem. Phys, 23, 1833–1840 (1955). DOI.org/10.1063/1.1740588

P. Polizer, J. S. Murry, Theoretical biochemistry and molecular biophysics: a comprehensive survey, in: D. I. Beveridge, R. Lavery (Eds.), Electrostatic Potential Anal-ysis of Dibenzo –p-dioxins and Structurally Similar Sys-tem in Relation to Their Biological Activities, Protein, Vol.2, Academic Press, Schenectady, NY, 1991, Chapter 13

V. P. Gupta, A. Sharma, V. Virdi, V. J. Ram, Structural and spectroscopic studies on some chloropyrimidine de-rivatives by experimental and quantum chemical methods, Spectrochim Acta Part A, 64, 57–67 (2006).

DOI.org/10.1016/j.saa.2005.06.045

Z. Ran, D. Baotong, S. Gang, S. Yuxi, Experimental and theoretical studies on o-, m- and p-chlorobenzyl-ideneaminoantipyrines, Spectrochim Acta Part A, 75, 1115–1124 (2010). DOI.org/10.1016/j.saa.2009.12.067

O. Prasad, L. Sinha, N. Kumar, Theoretical Raman and IR spectra of tegafur and comparison of molecular elec-trostatic potential surfaces, polarizability and hyerpolar-izability of tegafur with 5-fluoro-uracil by density func-tional theory, J. At. Mol. Sci, 1, 201–214 (2010).

DOI: 10.4208/jams.032510.042010a




DOI: http://dx.doi.org/10.20450/mjcce.2019.1368

Refbacks





Copyright (c) 2019 Balamurugan Natarajan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.