Studies on heavy metal removal efficiency and antibacterial activity of 2-(diphenylphosphino)aminopyridine
DOI:
https://doi.org/10.20450/mjcce.2018.1404Keywords:
aminophosphines, heavy metals, solvent extraction, antibacterial activityAbstract
The solvent extraction of metal picrates such as Ni2+, Cu2+, Co2+, Pb2+ and Cd2+ from the aqueous to the organic phase was studied using 2-(diphenylphosphino)aminopyridine (Ph2PNHpy). The effects of parameters including the pH of the aqueous phase and the ligand solution volume were investigated to determine the extraction ability of the ligand for metal ions. The results showed that the extraction percentages of metal ions were high at low pH values. The antibacterial activity of the aminophosphine was also screened against Escherichia coli (E. coli) ATCC 25922, Staphylococcus aureus (S. aureus) ATCC 25923, Pseudomonas syringae pv. tomato (P. syringae) DC300, Salmonella enterica serotype Typhmurium (S. typhmurium) SL 1344 and Streptococcus mutans (S. mutans) ATCC 25175. From the studies of antibacterial activity, it was observed that the ligand exhibited a potent inhibitory effect against all Gram-negative and Gram-positive bacteria with a diameter of inhibition zone ranging from 3.86 to 18.10 mm. The aminophosphine ligand (Ph2PNHpy) should be considered as a suitable bio-active molecule for antimicrobial material design and next-generation, non-toxic drug fabrication. The Ph2PNHpy obtained may have the potential for use as an antimicrobial additive for bioengineering applications.
References
M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda, Toxicity, mechanism and health ef-fects of some heavy metals, Interdiscip. Toxicol, 7, 60–72 (2014). DOI: 10.2478/intox-2014-0009
G. U. Akkuş, E. Al, S. E. Korcan, Selective extraction of toxic heavy metals and biological activity studies using pyrimidylthioamide functionalised calix[4]arene, Supramo. Chem., 27, 522–526 (2015).
DOI: https://doi.org/10.1080/10610278.2015.1020944
Y. H. Ibrahim, A. A. Shakour, N. M. Abdel-Latif, N. M. El-Taieb, Assessment of heavy metal levels in the envi-ronment, Egypt, J. Am. Sci., 7 (12), 148–153 (2011).
M. Dutta, D. Das, Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions, Trends Anal. Chem., 32, 113–132 (2012).
DOI: https://doi.org/10.1016/j.trac.2011.08.010
A. A. Bhatti, A. A. Bhatti, I. B. Solangi, S. Memon, Pb2+ adsorption behavior of calix[4]arene based Merrifield Resin, Desalin.Water Treat., 51, 4666–4674 (2013). DOI: https://doi.org/10.1080/19443994.2013.769757
M. Cegłowski, G. Schroeder, Removal of heavy metal ions with the use of chelating polymers obtained by grafting pyridine–pyrazole ligands onto polymethylhydrosiloxane, Chem. Eng. J., 259, 885–893 (2015).
DOI: https://doi.org/10.1016/j.cej.2014.08.058
F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage, 92, 407–418 (2011).
DOI: https://doi.org/10.1016/j.jenvman.2010.11.011
S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, Y. G. Zhu, Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China, Environmental Pollution, 152, 686–692 (2008).
DOI:10.1016/j.envpol.2007.06.056
Y. Liu, H. S. Jeon, M. S. Lee, Solvent extraction of Pr and Nd from chloride solutions using ternary extractant system of Cyanex 272, Alamine 336 and TBP, J. Ind. and Eng. Chem., 31, 74–79 (2015).
DOI: https://doi.org/10.1016/j.jiec.2015.06.009
Y. A. El-Nadi, Lanthanum and neodymium from Egyp-tian monazite: Synergistic extractive separation using organophosphorus reagents, Hydrometallurgy, 119–120, 23–29 (2012).
DOI: https://doi.org/10.1016/j.hydromet.2012.03.003
S. Zhu, H. Hu, J. Hu, J. Li, F. Hu, Y. Wang, Structural insights into the coordination and extraction mechanism of nickel(II) with dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester as extractants, J. Chin. Chem. Soc., 64, 1294–1302 (2017).
DOI: 10.1002/jccs.201700199
D. Sihem, B. Djamel, Extraction of copper(II) with di(2- ethylhexyl)phosphoric acid from perchlorate medium, Analytical Chemistry Letters, 5:4, 198–205 (2015).
DOI: 10.1080/22297928.2015.1116406
E. Bidari, M. Irannajad, M. Gharabaghi, Investigation of the influence of acetate ions on cadmium extraction with D2EHPA, Hydrometallurgy, 144–145, 129–132 (2014). DOI: https://doi.org/10.1016/j.hydromet.2014.02.004
V. Kumar, M. Kumar, M. Kumar, J. Jeong, J. Lee, Sol-vent extraction of cadmium from sulfate solution with di-(2-ethylhexyl) phosphoric acid diluted in kerosene, Hydrometallurgy, 96, 230–234 (2009).
DOI: https://doi.org/10.1016/j.hydromet.2008.10.010
D. Cholico-Gonzalez, A. Chagnes, G. Cote, M. Avila-Rodriguez, Separation of Co(II) and Ni(II) from aqueous solutions by bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) using trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101) as solvent, J. Mol. Liq., 209, 203–208 (2015).
DOI: https://doi.org/10.1016/j.molliq.2015.05.048
B. R. Reddy, D. N. Priya, J. R. Kumar, Solvent extraction of cadmium(II) from sulphate solutions using TOPS 99, PC 88A, Cyanex 272 and their mixtures, Hydromet-allurgy, 74, 277–283 (2004).
DOI: https://doi.org/10.1016/j.hydromet.2004.06.001
B. R. Reddy, D. N. Priya, Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel–cadmium batteries, using Cyanex 923 and 272, J. Power Sources, 161, 1428–1434 (2006).
DOI: https://doi.org/10.1016/j.jpowsour.2006.05.044
N. A. Grigorieva, G. L. Pashkov, I. Y. Fleitlikh, L. K. Nikiforova, M. A. Pleshkov, Nickel extraction from sul-fate media with Cyanex 301 in the presence of electron donor additives, Hydrometallurgy, 105, 82–88 (2010). DOI: https://doi.org/10.1016/j.hydromet.2010.08.001
B. Gupta, A. Deep, S. N. Tandon, Recovery of chromium and nickel from industrial waste, Ind. Eng. Chem. Res, 41, 2948–2952 (2002).
DOI: https://pubs.acs.org/doi/pdf/10.1021/ie010934b
B. Gupta, A. Deep, P. Malik, Extraction and recovery of cadmium using Cyanex 923, Hydrometallurgy, 61, 65–71 (2001).
DOI: https://doi.org/10.1016/S0304-386X(01)00157-8
B. Menoyo, M. P. Elizalde, A. Almela, Extraction of lead by Cyanex 302 from phosphoric acid media, Solvent Extr. Ion Exch., 19, 677–698 (2001).
DOI: https://www.tandfonline.com/doi/abs/10.1081/SEI-100103815
K. Staszak, K. Wieszczycka, P. Burmistrzak, Removal of Cadmium(II) Ions from chloride solutions by Cyanex 301 and Cyanex 302, Sep. Sci. Technol, 46, 1495–1502 (2011).
DOI: https://doi.org/10.1080/01496395.2011.563258
S. Choi, V. T. Nguyen, J. Lee, H. Kang, B. D. Pandey, Liquid–liquid extraction of Cd(II) from pure and Ni/Cd acidic chloride media using Cyanex 921: A selective treatment of hazardous leachate of spent Ni–Cd batteries, J. Hazard. Mater., 278, 258–266 (2014).
DOI: 10.1016/j.jhazmat.2014.06.013
R. A. Cherkasov, A. R. Garifzyanov, E. B. Bazanova, R. R. Davletshin, S. V. Leont’eva, Liquid extraction of some rare earth elements with aminomethylphosphine oxides, Russ. J. Gen. Chem, 82, 33–42 (2012).
DOI: 10.1134/S1070363212010069
M. Tian, F. Mu. Q. Jia, X. Quan, W. Liao, Solvent ex-traction studies of zinc(II) and cadmium(II) from a chlo-ride medium with mixtures of neutral organophosphorus extractants and amine extractants, J. Chem. Eng. Data, 56, 2225–2229 (2011). DOI: 10.1021/je101245d
S. Pratihar, R. Pegu, A. K. Guha, B. Sarma, Pd(II) coor-dinated deprotonated diphenyl phosphino amino pyridine: reactivity towards solvent, base, and acid, Dalton Trans., 43, 17136–17144 (2014).
DOI: 10.1039/C4DT01665C
Ö. Sarıöz, Y. Sürme, V. Muradoğlu, Heavy-metal ex-traction capability of chalcogenoic aminophosphines de-rived from 1-amino-4-methylpiperazine, Chem. Pap, 67 (10), 1345–1349 (2013).
DOI: 10.2478/s11696-013-0372-2
A. Alsaygh, J. Al-Humaidi, I. Al-Najjar, Synthesis of some new pyridine-2-yl-benzylidene-imines, Int. J. Org. Chem., 4, 116–212 (2014).
DOI: 10.4236/ijoc.2014.42013
M. S. Abbady, M. S. K. Youssef, Synthesis and biologi-cal activity of some new pyridines, pyrans, and indazoles containing pyrazolone moiety, Med. Chem. Res., 23, 3558–3568 (2014).
DOI: 10.1007/s00044-014-0935-y
W. Xue, C. Zhang, Z. Zeng, X. Chen, Liquid-liquid equilibria for systems of 1-butanol + water +2,6-di-aminopyridine and 1-butanol + water + 2-amino¬pyridine, J. Chem. Eng. Data, 54, 1266–1270 (2009). DOI: 10.1021/je8007843
R. G. Mohamed, F. M. Elantabli, N. H. Helal, S. M. El-Medani, New group 6 metal carbonyl complexes with 4,5-dimethyl-N,Nbis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic volt-ammetry and biological activity studies, Spectrochim. Acta Part A, 141, 316–326 (2015).
DOI:10.1016/j.saa.2015.01.054
H. T. Al-Masri, B. M. Mohamed, Z. Moussa, M. H. Alkordi, Synthesis and characterization of carbonyl group-6-metal derivatives with ligand N,N-bis(di-phenylphosphino)naphthalen-1-amine (=N-(Diphenyl-phosphino)-N-naphthalen-1-yl-P,P-diphenylphosphinous Amide). Molecular structure of cis-tetracarbonyl[N-(diphenylphosphino-kP)-Nnaphthalen-1-yl-P,P-diphenyl-phosphinous amide-kP] molybdenum (cis-[Mo(CO)4{C10H7-1-N(PPh2)2}]), Helv. Chim. Acta, 96, 738–746 (2013). DOI: 10.1002/hlca.201200315
M. F. Fillat, M. C. Gimeno, A. Laguna, E. Latorre, L. Ortego, M. D. Villacampa, Synthesis, structure and bac-tericide activity of (aminophosphane)gold(I) thiolate complexes, Eur. J. Inorg. Chem., 9, 1487–1495 (2011). DOI: 10.1002/ejic.201001195
L. Ortego, J. Gonzalo-Asensio, A. Laguna, M. D. Villacampa, M. C. Gimeno, (Aminophosphane)gold(I) and silver(I) complexes as antibacterial agents, J. Inorg. Biochem., 146, 19–27 (2015).
DOI: https://doi.org/10.1016/j.jinorgbio.2015.01.007
P. A. Aguirre, C. A. Lagos, S. A. Moya, C. Zuniga, C. Vera-Oyarce, E. Sola, G. Peris, J. C. Bayon, Methoxycarbonylation of olefins catalyzed by palladium complexes bearing P,N-donor ligands, Dalton Trans, 5419–5426 (2007). DOI: 10.1039/b704615b
S. M. Aucott, A. M. Z. Slawin, J. D. Woollins, The co-ordination chemistry of 2-(diphenylphosphinoamino) pyridine, J. Chem. Soc. Dalton Trans., 2559–2575 (2000). DOI: 10.1039/b003294h
M. Alyapyshev, V. Babain, N. Borisova, I. Eliseev, D. Kirsanov, A. Kostin, A. Legin, M. Reshetova, Z. Smirnova, 2,2’-Dipyridyl-6,6’-dicarboxylic acid diamides: Synthesis, complexation and extraction prop-erties, Polyhedron, 29, 1998–2005 (2010).
DOI: https://doi.org/10.1016/j.poly.2010.03.021
M. L. Clarke, A. M. Z. Slawin, M. V. Wheatley, J. D. Woollins, Synthesis and structure of novel rhodium complexes of multi-functionalised amine-phosphine lig-ands, J. Chem. Soc., Dalton Trans., 3421–2429 (2001). DOI: 10.1039/b104523g
S. M. Aucott, A. M. Z. Slawin, J. D. Woollins, Synthe-sis, structure and properties of new pyridylaminophosphine complexes, Phosphorus. Sulfur and Silicon, 124–125, 473–476 (1997).
DOI: 10.1080/10426509708545662
C. Holzhacker, B. Stöger, M. D. Carvalho, L. P. Ferreira, E. Pittenauer, G. Allmaier, L. F. Veiros, S. Realista, A. Gil, M. J. Calhorda, D. Müler, K. Kirchner, Synthesis and reactivity of TADDOL-based chiral Fe(II) PNP pincer complexes-solution equilibria between κ2P,N- and κ3P,N,P-bound PNP pincer ligands, Dalton Trans, 44, 13071–13086 (2015).
DOI: 10.1039/c5dt00832h
W. Lackner-Warton, S. Tanaka, C. M. Standfest-Hauser, Ö. Öztopcu, J. Hsieh, K. Mereiter, K. Kirchner, Synthesis and characterization of ruthenium p-cymene complexes bearing bidentate P–N and E–N ligands (E = S, Se) based on 2-aminopyridine, Polyhedron, 29, 3097–3102 (2010).
DOI: https://doi.org/10.1016/j.poly.2010.08.014
E. S. Tabei, H. Samouei, M. Rashidi, Multiple hydrogen bondings in a platinum complex, Dalton Trans, 40, 11385–11388 (2011). DOI:10.1039/c1dt11298h
J. R. Turkington, P. J. Bailey, J. B. Love, A. M. Wilson, P. A. Tasker, Exploiting outer-sphere interactions to en-hance metal recovery by solvent extraction, Chem. Commun., 49, 1891–1899 (2013).
DOI:10.1039/c2cc37874d
A. Almela, M. P. Elizalde, Solvent extraction of cadmi-um(II) from acidic media by Cyanex 302, Hydrometal-lurgy, 37, 47–57 (1995).
DOI: https://doi.org/10.1016/0304-386X(94)00012-R
S. Chauhan, T. Patel, A Review on solvent extraction of nickel, Int. J. Eng. Res. Technol, 3, 1315–1322 (2014). https://www.ijert.org/component/search/?searchword=A%20Review%20on%20solvent%20extraction%20of%20nickel&searchphrase=all&Itemid=451
M. J. Jung, P. Venkateswaran, Y. S. Lee, Solvent extrac-tion of nickel(II) ions from aqueous solutions using tri-ethylamine as extractant, J. Ind. Eng. Chem., 14, 110–115 (2008).
DOI: https://doi.org/10.1016/j.jiec.2007.08.004
A. Cerpa, F. J. Alguacil, Separation of cobalt and nickel from acidic sulfate solutions using mixtures of di(2-ethylhexyl)phosphoric acid (DP-8R) and hydroxyoxime (ACORGA M5640), J. Chem. Technol. Biotechnol., 79, 455–460 (2014).
DOI: http://onlinelibrary.wiley.com/doi/10.1002/jctb.960/pdf
Y. Liu, M. Lee, Separation of Co and Ni from a chloride leach solutions of laterite ore by solvent extraction with extractant mixtures, J. Ind. Eng. Chem, 28, 322–327 (2015). DOI: https://doi.org/10.1016/j.jiec.2015.03.010
B. Dede, F. Karipcin, F. Arabalı, M. Cengiz, Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes, Chem. Pap., 64, 25–33 (2010). https://link.springer.com/content/pdf/10.2478%2Fs11696-009-0095-6.pdf
C. P Mane, M. A. Anuse, Extraction behaviour of 2-octylaminopyridine towards lead(II) from succinate media and its separation from other toxic metals, J. Hazard. Mater, 152, 1146–1154 (2008).
DOI: https://doi.org/10.1016/j.jhazmat.2007.07.119
X. Chen, T. Zhou, J. Kong, H. Fang, Y.Chen, Separation and recovery of metal values from leach liquor of waste lithium nickel cobalt manganese oxide based cathodes, Sep. Purif. Technol., 41, 76–83 (2015).
DOI: https://doi.org/10.1016/j.seppur.2014.11.039
T. N. Shilimkar, M. A. Anuse, Rapid extraction of lead(II) from succinate media with n-octylaniline in tol-uene, Sep. Purif. Technol, 26, 185–193 (2002).
DOI: https://doi.org/10.1016/S1383-5866(01)00166-6
T. Hayashita, T. Higuchi, H. Sawano, A. P. Marchand, K. A. Kumar, S. G. Bott, K. Mlinaric-Majerski, T. Sumanovac, N. S. A. Elkarim, H. Hwang, G. G. Talanova and R. A. Bartsch, Molecular design of lipo-philic disalicylic acid compounds with varying spacers for selective lead(II) extraction, Talanta, 52, 385–396 (2000). DOI: https://doi.org/10.1016/S0039-9140(00)00359-3
K. Ikeda, S. Abe, Liquid-liquid extraction of cationic metal complexes with p-nonylphenol solvent: Application to crown and thiacrown ether complexes of lead(II) and copper(II), Anal. Chim. Acta, 363, 165–170 (1998). DOI: https://doi.org/10.1016/S0003-2670(98)00126-3
M. C. Olivier, C. Dorfling, J. J. Eksteen, Evaluating a solvent extraction process route incorporating nickel preloading of Cyanex 272 for the removal of cobalt and iron from nickel sulphate solutions, Miner. Eng., 27–28, 37–51 (2012).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.