A 1:1 energetic co-crystal formed between trinitrotoluene and 2,3-diaminotoluene
DOI:
https://doi.org/10.20450/mjcce.2018.1421Keywords:
synthesis, structural determination, Structural ChemistryAbstract
A 1:1 co-crystal of trinitrotoluene (TNT) and 2,3-diaminotoluene was prepared by solvent evapo- ration, and the structure of the co-crystal was determined by single-crystal and powder X-ray diffraction. The results indicate that the main mechanism of co-crystallization originates from the intermolecular hy- drogen bonding (amino-nitro) and π-π stacking. We also examined the Hirshfeld surfaces and associated fingerprint plots of the co-crystal and reveal that the structures are stabilized by H…H, O–H, O…O and C…C (π-π) intermolecular interactions. We analyzed the crystal packing and show its influence upon im- pact sensitivity. The results highlight that co-crystallization is an effective way to modify the sensitivity, oxygen balance and density of explosives.
References
J. Akhavan, The Chemistry of Explosives., 3rd ed., RSC Press, Cambridge, UK, 2011, pp.1–2, ISBN 978-1- 84973-330-4.
A. K. Sikder, N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 112 (1–2), 1−15 (2004). DOI:10.1016/j. jhazmat.2004.04.003
F. P. A. Fabbiani, C. R. Pulham, High-pressure studies of pharmaceutical compounds and energetic materials, Chem. Soc. Rev. 35 (10), 932–942 (2006).
DOI:10.1039/B517780B
J. Evers, T. M. Klapötke, P. Mayer, G. Oehlinger, J. Welch, α- and β-FOX-7, polymorphs of a high energy density material, studied by X-ray single crystal and powder investigations in the temperature range from 200 to 423 K., Inorg. Chem., 45 (13), 4996–5007 (2006). DOI:10.1021/ic052150m.
W. C. McCrone, Cyclotetramethylene tetranitramine (HMX), Anal. Chem., 22 (9), 1225–1226 (1950).
D. J. Berry, C. C. Seaton, W. Clegg, Applying hot-stage microscopy to co-crystal screening: A study of nicoti- namide with seven active pharmaceutical ingredients, Cryst Growth Des., 8(5), 1697–1712 (2008).
DOI:10.1021/cg800035w
N. Chieng, M. Hubert, D. Saville, T. Rades, J. Aaltonen, Formation kinetics and stability of carbamazepine- nicotinamide cocrystals prepared by mechanical activa- tion, Cryst Growth Des., 9(5), 2377–2386 (2009).
DOI:10.1021/cg801253f
D. R. Weyna, T. Shattock, P. Vishweshwar, M. J. Za- worotko, Synthesis and structural characterization of co- crystals and pharmaceutical cocrystals: Mechanochemis- try vs slow evaporation from solution, Cryst Growth Des., 9(2):1106–1123 (2009). DOI:10.1021/cg800936d
J. C. Barnes, W. Golnazarians, The 1:1 complex of pyrene with 2,4,6-trinitrotoluene, Acta Cryst., C43, 549– 552 (1987).
K.B. Landenberger, A. J. Matzger, Cocrystal engineering of a prototype energetic material supramolecular chem- istry of 2,4,6-trinitrotoluene. Crystal Growth & Design., 10(12), 5341–5347 (2010). DOI:10.1021/cg101300n
O. Bolton, A. J. Matzger, Improved stability and smart- material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed., 50, 8960–8963 (2011). doi.org/10.1002/anie.201104164.
Z. Yang, H. Li, H. Huang, X. Zhou, J. Li, F. Nie, Prepa- ration and performance of a HNIW/TNT cocrystal ex- plosive, Propellants, Explos Pyrotech., 38(4), 495–501 (2013). DOI:10.1002/prep.201200093
J. B. Ledgard, The Preparatory Manual of Explosives. 3rd ed., Washington, USA, 2007, pp. 180; ISBN 13: 978-0615142906
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl Crys- tallogr., 42(2), 339–341 (2009).
DOI:10.1107/S0021889808042726
G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem., A71, 3–8 (2015). DOI:10.1107/S2053229614024218
G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta. Crystallogr. Sect. C Struct. Chem., C71, 3–8 (2015).
C. Loschen, A. Klamt, COSMO quick: A novel interface for fast σ-profile composition and its application to COSMO-RS solvent screening using multiple reference solvents, Ind. Eng. Chem. Res., 51(43), 14303–14308 (2012). DOI:10.1021/ie3023675.
M. E. Etter, Hydrogen Bonds as Design Elements in Organic Chemistry, Journal Phys. Chem. 95(8), 4601– 4610 (1991). DOI:10.1021/j100165a007.
T. W. Panunto, Z. Urbinczyk-Lipkowska, R. Johnson, M. C. Etter, Hydrogen-bond formation in nitroanilines: The first step in designing acentric materials, J. Am. Chem. Soc., 109(25), 7786–7797 (1987). DOI:10.1021/ja00259a030.
H. F. Clausen, M. S. Chevallier, M. A. Spackman, B. B. Iversen, Three new co-crystals of hydroquinone: crystal structures and hirshfeld surface analysis of intermolecu- lar interactions, New J. Chem. 34(2), 193–199 (2010). DOI:10.1039/B9NJ00463G.
M. J. Kamlet, H. G. Adolph, The relationship of impact sensitivity with structure of organic high explosives, II. Polynitroaromatic explosives. Propellants, Explos. Py- rotech., 4(2), 30–34 (1979). DOI:10.1002/prep.19790040204.
Y. Ma, A. Zhang, X. Xue, D. Jiang, Y. Zhu, C. Zhang, Crystal packing of impact-sensitive high-energy explo- sives, Cryst Growth Des., 14(11), 6101–6114 (2014).
DOI:10.1021/cg501267f
Y. Ma, A. Zhang, C. Zhang, D. Jiang, Y. Zhu, C. Zhang, Crystal packing of low-sensitivity and high-energy ex- plosives, Cryst Growth Des., 14(11), 4703–4713 (2014).
DOI:10.1021/cg501048v
H. H. Cady, A. C. Larson, The crystal structure of 1,3,5- triamino-2,4,6-trinitrobenzene, Acta Crystallographica, 18, 485–496 (1965).
DOI: 10.1107/S0365110X6500107X
J. R. Kolb, H. F. Rizzo, Growth of 1,3,5-triamino-2,4,6- trinitrobenzene (TATB). I. Anisotropic thermal expan- sion. Propellants and Explosives, 4, 10–16 (1979).
DOI: 10.1002/prep.19790040104
C. Zhang, X. Wang, H. Huang, π-Stacked interactions in explosive crystals: Buffers against external mechanical stimuli, J. Am. Chem. Soc. 130(26), 8359–8365 (2008).
DOI:10.1021/ja800712e
J. J Dick, Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive, Appl. Phys. Lett., 44(9), 859–861 (1984).
DOI:10.1063/1.94951
M. M. Kuklja, S. N. Rashkeev, Interplay of decomposi- tion mechanisms at shear-strain interface, J. Phys.Chem. C. 113(1), 17–20 (2009). DOI:10.1021/jp808367r
C. Zhang, X. Xue, Y. Cao, Intermolecular friction sym- bol derived from crystal information, Cryst. Eng. Comm. 5(34), 6837 (2013). DOI:10.1039/c3ce40817e
R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, T. Gelbrich, Polymorphism in 2-4-6- trinitrotoluene, Cryst. Growth. Des. 3(6), 1027–1032 (2003). DOI:10.1021/cg0340704.
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.