Synthesis, characterization and biological study of new dinuclear zinc(II) and nickel(II) octaaza macrocyclic complexes

Authors

  • Milena Krstic Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18 Belgrade
  • Branka Petković Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Priština, Lole Ribara 29, Kosovska Mitrovica
  • Miloš Milčić Center for Computational Chemistry and Bioinformatics, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade
  • Dušan Mišić Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade
  • Juan Francisco Santibanez Institute for Medical Research, P.O. Box 102, Belgrade, Serbia ************************ Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1780, Santiago

DOI:

https://doi.org/10.20450/mjcce.2019.1599

Keywords:

zinc, nickel, tpmc, complex, biological activity

Abstract

Two new nitrato complexes of zinc and nickel with 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc), have been synthesized and characterized. The IR spectral peaks showed that the coordinated and ionic nitrate ions are in agreement with the formula proposed by elemental analysis. Conductometric titrations predicted methanol to be a convenient solvent for synthesis and revealed the stoichiometry of the complexes, while molar electrical conductivities indicated a 1 : 3 complex electrolyte type for the zinc complex, and a 1 : 2 complex electrolyte type for the nickel complex. The optimized complex structure was obtained by molecular modeling and density functional theory calculations. The biological activity of the novel complexes was examined by screening eight different bacterial strains and two cancer cell lines. The zinc complex showed better antimicrobial activity against the bacterial strains, while the complexes did not show significance antiproliferative activity toward cancer cells MCF-7 and MDA-MB-231.

References

L. Qui, C. Zhu, H. Chen, M. Hu, W. He, Z. Guo, A turn-on fluorescent Fe3+ sensor derived from an anthra-cene-bearing bisdiene macrocycle and its intracellular im-aging application, Chem. Commun. 50, 4631–4634 (2014). DOI: 10.1039/c3cc49482a

R. Lamelas, V. Garcia, A. Linares, R. Bastida, E. La-bisbal, A. Fernandez-Lodeiro, C. Lodeiro, C. Nunez, L. Valencia, Novel trans-disubstituted hexaaza-macrocyclic ligands containing pyridine head units: Synthesis, disub-stitution and colorimetric properties, Sensor. Actuat. B-Chem. 225, 481–491 (2016).

DOI: http://dx.doi.org/10.1016/j.snb.2015.11.090

R. Jastrzab, M. T. Kaczmarek, M. Nowak, A. Trojano-wska, M. Zabiszak, Complexes of polyamines and their derivatives as living system active compounds, Coordin. Chem. Rev. 351, 32–44 (2017).

DOI: http://dx.doi.org/10.1016/j.ccr.2017.05.001

G. Vučković, M. Antonijević-Nikolić, S. B. Tanasković, V. Živković-Radovanović, New Cu(II) and Co(II) oc-taazamacrocyclic complexes with 2-amino-3-phenylpropanoic acid, J. Serb. Chem. Soc. 76, 719–731 (2011). DOI: 10.2298/JSC101201062V

E. A. Kovalenko, D. A. Mainichev, O. A. Gerasko, D. Yu. Naumov, V. P. Fedin, Inclusion compounds of the copper(II) and zinc(II) complexes with cyclam in cucur-bit[8]uril: synthesis and structure, Russ. Chem. Bull., Int. Ed. 60, 841–848 (2011).

M. P. Clares, C. Serena, S. Blasco, A. Nebot, L. Castillo, C. Soriano, A. Domenech, A. V. Sancez-Sancez, L. Sol-er-Calero, J. L. Mullor, A. Garcia-Espana, E. Garcia-Espana, Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity, J. Inorg. Biochem. 143, 1–8 (2015). DOI: http://dx.doi.org/10.1016/j.jinorgbio.2014.11.001

R. Smolkova, V. Zelenak, L. Smolko, J. Kuchar, M. Ra-bajdova, M. Ferencakova, M. Marekova, Novel zinc complexes of a non-steroidal anti-inflammatory drug, niflumic acid: Structural characterization, human-DNA and albumin binding properties, Eur. J. Med. Chem. 153, 131–139 (2018). DOI:10.1016/j.ejmech.2017.05.009

P. B. Cressey, A. Eskandrari, K. Suntharalingam, A can-cer stem cell potent cobalt(III)-cyclam complex bearing two tolfenamic acid moieties, Inorganics, 5, 12 (2017). DOI: https://doi.org/10.3390/inorganics5010012

I. Grabchev, S. Yordanova, E. Vasileva-Tonkova, M. Cangiotti, A. Fattori, R. Alexandrova, S. Stoyanov, M. F. Ottaviani, A novel benzofurazan-cyclam conjugate and its Cu(II) complex: Synthesis, characterization and in vitro cytotoxicity and antimicrobial activity, Dyes Pigments, 129, 71–79 (2016).

DOI: http://dx.doi.org/10.1016/j.dyepig.2016.02.013

J. Li, Y. Zhu, S. T. Hazeldine, S. M. Firestine, D. Ou-picky, Cyclam-based polymeric copper chelators for gene delivery and potential PET imaging, Biomacromolecules, 13, 3220–3227 (2012). DOI:10.1021/bm3009999

T. M. Hunter, I. W. McNae, X. Liang, J. Bella, S. Par-sons, M. D. Walkinshaw, P. J. Sadler, Protein recogni-tion of macrocycles: binding of anti-HIV metallocyclams to lysozyme, PNAS, 102, 2288-2292 (2005).

DOI: https://doi.org/10.1073/pnas.0407595102

D. Schols, J. A. Este, G. Henson, E. De Clercq, Bicy-clams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4, Antivir. Res., 35, 147–156 (1997).

DOI: https://doi.org/10.1016/S0166-3542(97)00025-9

L. G. Alves, P. F. Pinheiro, J. R. Feliciano, D. P. Damaso, J. H. Leitao, A. M. Martins, Synthesis, antimi-crobial activity and toxicity to nematodes of cyclam deriv-atives, Int. J. Atimicrob. Ag., 49, 646-649 (2017). DOI: http://dx.doi.org/10.1016/j.ijantimicag.2017.03.002

E. Asato, S. Hashimoto, N. Matsumoto, S. Kida, Synthe-sis, crystal structure, and quasi-reversible dioxygen bind-ing of [Cu2(tpmc)]X2[tpmc = 1,4,8,11-tetrakis(2′-pyridylmethyl)-1,4,8,11-tetra-azacyclotetradecane; X = ClO4, PF6, or CF3SO3], J. Chem. Soc., Dalton Trans., 6, 1741–1746 (1990). DOI:10.1039/DT9900001741

C. M. Che, W. T. Tang, T. C. W. Mak, Co-ordination chemistry of ruthenium with chelating amine ligands: syn-thesis and X-ray structural study of the N6-co-ordinated ruthenium(II) complex of 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetra-aza-cyclotetradecane, J. Chem. Soc., Dalton Trans., 11, 2879–2883 (1988). DOI:10.1039/DT9880002879

J. Narayanan, A. Solano-Peralta, V. M. Ugalde-Saldivar, R. Escudero, H. Hopfl, M. E. Sosa-Torres, New dinucle-ar cobalt(II) octaaza macrocyclic complexes with high ox-idation redox potentials: Their crystal structure and unu-sual magnetic properties, Inorg. Chim. Acta, 361, 2747–2758 (2008). DOI:10.1016/j.ica.2008.01.049

S. B. Tanasković, G. Vučković, M. Antonijević-Nikolić, T. Stanojković, G. Gojgić-Cvijović, Binuclear biological-ly active Co(II) complexes with octazamacrocycle and ali-phatic dicarboxylates, J. Mol. Struct., 1029, 1–7 (2012). DOI: 10.1016/j.molstruc.2012.06.055

M. R. Malachowski, B. T. Dorsey, M. J. Parker, M. E. Adams, R. S. Kelly, Probing the catalytic properties of copper(II) complexes of appended cyclams: correlations between catalysis and stability constants or electrochemi-cal properties, Polyhedron, 17, 1289–1294 (1998).

DOI: https://doi.org/10.1016/S0277-5387(97)00380-X

S. B. Tanasković, M. Antonijević-Nikolić, B. B. Hollo, B. Dražić, T. Stanojković, K. Meszaros-Szecsenyi, G. Vučković, Correlations between the in vitro antiprolifera-tive activity, structure and thermal stability of some mac-rocyclic dinuclear Cu(II) complexes, J. Serb. Chem. Soc., 79, 1235–1247 (2014).

DOI: 10.2298/JSC140404044T

M. A. Masood, D. J. Hodgson, An unprecedented mon-omeric rhenium(V) complex of the ligand 1,4,8,11-tetrakis(2-pyridylmethyl)- 1,4,8,11-tetraazacyclotetrade-cane, Inorg. Chem., 33, 2488–2490 (1994).

DOI: 10.1021/ic00089a028

B. L. Ruiz-Herrera, M. Flores-Alamo, R. A. Toscano, R. Escudero, M. E. Sosa-Torres, Adsorption of water in-duces a reversible structural phase transition and colour change in new nickel(II) macrocyclic complexes forming flexible supramolecular networks, New J. Chem., 40, 7465–7475 (2016). DOI: 10.1039/c6nj01621a

E. Asato, H. Toftlund, S. Kida, M. Mikuriya, K. S. Mur-ray, Preparation and characterization of copper(II) com-plexes with 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane, Inorg. Chim. Acta, 165, 207–214 (1989).

DOI: https://doi.org/10.1016/S0020-1693(00)83241-7

S. P. Sovilj, G. Vučković, V. M. Leovac, D. M. Minić, Dinuclear copper(II) complexes of N,N', N'', N'''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetrade-cane and some N,S or N,O bidentate ligands, Polish J. Chem., 74, 945–954 (2000).

A. M. Appel, R. Newell, D. L. DuBois, M. R. DuBois, Concentration of carbon dioxide by electrochemically modulated complexation with a binuclear copper complex, Inorg. Chem., 44, 3046–3056 (2005).

DOI: 10.1021/ic050023k

B. B. Petković, S. P. Sovilj, M. V. Budimir, R. M. Si-monović, V. M. Jovanović, A copper(II) ion‐selective po-tentiometric sensor based on N,N′,N″,N′′′‐tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane in PVC matrix, Electroanalysis, 22, 1894–1900 (2010). DOI: 10.1002/elan.201000053

B. B. Petković, M. Milčić, D. Stanković, I. Stambolić, D. Manojlović, V. M. Jovanović, S. P. Sovilj, Complexation ability of octaazamacrocyclic ligand toward Co2+, Ni2+, Cu2+ and Zn2+ metal cations: Experimental and theoretical study, Electrochim. Acta, 89, 680–687 (2013).

DOI: http://dx.doi.org/10.1016/j.electacta.2012.11.100

N. Katsaros, M. Katsarou, S. P Sovilj, K. Babić-Samardžija, D. M. Mitić, Biological activity of some co-balt(II) and molybdenum(VI) complexes: in vitro cytotox-icity, Bioinorg.Chem. Appl., 2, 193–207 (2004).

DOI: //dx.doi.org/10.1155/S1565363304000123

M. Antonijević-Nikolić, J. Antić-Stanković, S. B. Ta-nasković, M. J. Korabik, G. Gojgić-Cvijović, G. Vučković, Preparation, characterisation and study of in vitro biologically active azamacrocyclic Cu(II) dicarbox-ylate complexes, J. Mol. Struct., 1054–1055, 297–306 (2013).

DOI: https://doi.org/10.1016/j.molstruc.2013.10.006

S. Chandrasekhar, W. L. Waltz, J. W. Quail, L. Prasad, Structural studies and redox reactivity of platinum com-plexes of 14-membered tetraaza macrocyclic ligands, Can. J. Chem., 75, 1363–1374 (1997).

DOI: https://doi.org/10.1139/v97-164

W. J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev., 7, 81–122 (1971).

DOI: http://dx.doi.org/10.1016/S0010-8545(00)80009-0

Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.

Clinical Laboratory Standards Institute. Performance Standards For Antimicrobial Susceptibility Testing, 16th International Supplement, Wayne, PA, Vol. 26, 2006.

G. H. Rounaghi, S. Heydari, A thermodynamic study of complex formation between dicyclohexyl-18-crown-6 (DCH18C6) and La3+, UO22+, Ag+, and NH4+ cations in acetonitrile-tetrahydrofuran binary media using conduc-tometric method, Russ. J. Coord. Chem., 34, 836–841 (2008). DOI: 10.1134/S1070328408110080

G. H. Rounaghi, M. Mohajeri, S. Tarahomi, R. Rahmani-an, Study of complex formation of dibenzo-18-crown-6 with Ce3+, Y3+, UO2+2UO22+ and Sr2+ cations in acetoni-trile–dioxane binary solvent mixtures, J. Solution. Chem., 40, 377–389 (2011).

DOI: 10.1007/s10953-011-9651-0

M. Gaye, F. B. Tamboura, A. S. Sall, Spectroscopic stud-ies of some lanthanide(III) nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone)-4-chlorophenol, Bull. Chem. Soc. Ethiop., 17, 27–34 (2003).

DOI: http://dx.doi.org/10.4314/bcse.v17i1.61726

S. F. M. Yusoff, A. A. Salleh Huddin, L. M. Yusoff, B. M. Yamin, N. Ibrahim, O.W. Leng, Synthesis, characteri-zation, and antibacterial activity of Cu(II), Ni(II), and Zn(II) complexes of 14-membered macrocyclic tetraaz-aligand, Oient. J. Chem., 31, 1751–1758 (2015).

DOI: http://dx.doi.org/10.13005/ojc/310356

Downloads

Published

2019-05-30

How to Cite

Krstic, M., Petković, B., Milčić, M., Mišić, D., & Santibanez, J. F. (2019). Synthesis, characterization and biological study of new dinuclear zinc(II) and nickel(II) octaaza macrocyclic complexes. Macedonian Journal of Chemistry and Chemical Engineering, 38(1), 1–11. https://doi.org/10.20450/mjcce.2019.1599

Issue

Section

Inorganic Chemistry