Formation of niobium oxides by electrolysis from acidic aqueous solutions on glassy carbon

Nataša M Vukićević, Vesna S Cvetković, Ljiljana S Jovanović, Miroslav M Pavlović, Jovan N Jovićević


In this study niobium oxide films were formed without peroxo-precursors from three different mixed acidic aqueous solutions on glassy carbon. Linear sweep voltammetry and potential step were techniques used for electrochemical experiments. The simultaneous and consecutive electrochemical reduction of water, nitrate and sulphate ions provided an alkaline environment with oxygen in the near vicinity of the working cathode, which in combination with the present niobium ions, produced niobium oxides and/or oxyhydroxides on the glassy carbon substrate. The formed deposits were analyzed using scanning electron microscopy and energy dispersive spectroscopy and appear to consist of NbO, NbO2 and Nb2O5. Both the niobium and acid concentration of the electrolytes used influenced the morphology and particle size of the deposits. The formation of niobium-fluoride and hydrogen-niobiumoxide complexes is addressed.


electrochemical deposition, niobium oxides, acidic solution, glassy carbon

Full Text:



C. Nico, T. Monteiro, M. P. F. Graça, Niobium oxides and niobates physical properties: Review and prospects, Prog. Mater. Sci. 80, 1–37 (2016).


R. A. Rani, A. S. Zoolfakar, A. P. O’Mullane, M. W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: Fundamental properties, synthesis methods and applications, J. Mater. Chem. A. 2, 15683–15703 (2014).


E. T. Salim, J. A. Saimon, M. K. Abood, M. A. Fakhri, Some physical properties of Nb2O5 thin films prepared using nobic acid based colloidal suspension at room temperature, Mater. Res. Express. 4, 106407 (2017). DOI:10.1088/2053-1591/aa90a6.

M. A. Aegerter, Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis, Sol. Energy Mater. Sol. Cells. 68, 401–422 (2001).


B. Y. Jeong, E. H. Jung, Micro-mountain and nano-forest pancake structure of Nb2O5 with surface nanowires for dye-sensitized solar cells, Met. Mater. Int. 19, 617–622 (2013). DOI:10.1007/s12540-013-3035-5.

M. T. Brumbach, T. M. Alam, R. H. Nilson, P. G. Kotula, B. B. McKenzie, R. G. Tissot, B. C. Bunker, Ruthenium oxide-niobium hydroxide composites for pseudocapacitor electrodes, Mater. Chem. Phys. 124, 359–370 (2010).


G. Park, N. Gunawardhana, C. Lee, S. M. Lee, Y. S. Lee, M. Yoshio, Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode, J. Power Sources. 236, 145–150 (2013). DOI:10.1016/j.jpowsour.2012.10.102.

A. de S. Santos, L. Gorton, L. T. Kubota, Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH, Electrochim. Acta. 47, 3351–3360 (2002).


A. Bonakdarpour, R. T. Tucker, M. D. Fleischauer, N. A. Beckers, M. J. Brett, D. P. Wilkinson, Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts, Electrochim. Acta. 85, 492–500 (2012). DOI:10.1016/j.electacta.2012.08.005.

S. H. Mujawar, A. I. Inamdar, C. A. Betty, V. Ganesan, P.S. Patil, Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films, Electrochim. Acta. 52, 4899–4906 (2007). DOI:10.1016/j.electacta.2007.01.054.

R. A. Rani, A. S. Zoolfakar, J. Z. Oua, M. R. Field, M. Austin, K. Kalantar-Zadeh, Nanoporous Nb2O5 hydrogen gas sensor, Sensors Actuators, B Chem. 176, 149–156 (2013). DOI:10.1016/j.snb.2012.09.028.

E. Eisenbarth, D. Velten, J. Breme, Biomimetic implant coatings, Biomol. Eng. 24, 27–32 (2007).


G. Ramírez, S. E. Rodil, S. Muhl, D. Turcio-Ortega, J. J. Olaya, M. Rivera, E. Camps, L. Escobar-Alarcón, Amorphous niobium oxide thin films, J. Non. Cryst. Solids. 356, 2714–2721 (2010).


M. J. Olszta, E. C. Dickey, Interface stoichiometry and structure in anodic niobium pentoxide, Microsc. Microanal. 14, 451–458 (2008).


M. Maček, B. Orel, Electrochromism of sol-gel derived niobium oxide films, Sol. Energy Mater. Sol. Cells. 54, 121–130 (1998). DOI:10.1016/S0927-0248(98)00062-2.

S. Cattarin, M. Musiani, B. Tribollet, Nb electrodissolution in acid fluoride medium, J. Electrochem. Soc. 149, B457–B464 (2002).


N. Sangwaranatee, M. Horprathum, J. Kaewkhao, Deposition of transparent niobium oxide thin film by DC reactive magnetron sputtering, Key Eng. Mater. 675–676, 217–220 (2016).


J. I. Eastcott, A. Parakh, M. T. Y. Paul, A. W. H. Lee, M. W. Bilton, B. D. Gates, Nanoscale thin films of niobium oxide on platinum surfaces: creating a platform for optimizing material composition and electrochemical stability, Can. J. Chem. 96, 260–266 (2018). DOI:10.1139/cjc-2017-0595.

S. A. O’Neill, I. P. Parkin, R. J. H. Clark, A. Mills, N. Elliott, Atmospheric pressure chemical vapour deposition of thin films of Nb2O5 on glass, J. Mater. Chem. 13, 2952–2956 (2003). DOI:10.1039/b307768n.

J. H. Lim, J. Choi, Formation of niobium oxide nanowires by thermal oxidation, J. Ind. Eng. Chem. 15, 860–864 (2009). DOI:10.1016/j.jiec.2009.09.013.

S. Karuppuchamy, Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells, Solid State Ionics. 151, 19–27 (2002). DOI:10.1016/S0167-2738(02)00599-4.

S. S. Fomanyuk, Y. S. Krasnov, G. Y. Kolbasov, V. N. Zaichenko, Electrochemical deposition of electrochromic niobium oxide films from an acidic solution of niobium peroxo complexes, Russ. J. Appl. Chem. 86, 644–647 (2013).


I. Zhitomirsky, Electrolytic deposition of niobium oxide films, Mater. Lett. 35, 188–193 (1998).


G. R. Lee, J. A. Crayston, Studies on the electrochemical deposition of niobium oxide, J. Mater. Chem. 6, 187–192 (1996). DOI: 10.1039/JM9960600187.

K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović, Morphology of Electrochemically and Chemically Deposited Metals, Springer International Publishing, Cham, 2016. DOI:10.1007/978-3-319-26073-0.

E. Asselin, T. M. Ahmed, A. Alfantazi, Corrosion of niobium in sulphuric and hydrochloric acid solutions at 75 and 95 °C, Corros. Sci. 49, 694–710 (2007). DOI:10.1016/j.corsci.2006.05.028.

CRC Handbook of Chemistry and Physics, CRC Press, Inc, Boca Raton, 2002.

A. Aspart, C. Z. Antoine, Study of the chemical behavior of hydrofluoric, nitric and sulfuric acids mixtures applied to niobium polishing, Appl. Surf. Sci. 227, 17–29 (2004). DOI:10.1016/j.apsusc.2003.10.001.

J. G. McCullought, L. Meites, The electroreduction of niobium(V) in hydrochlorid acid solutions at mercury electrodes, II. Controlled-potential coulometry and stirred-pool chronoamperometry, Electroanal. Chem. Interfacial Electrochem. 19, 111–123 (1968).

J. G. McCullough, L. Meites, The electroreduction of niobium(V) in hydrochloric acid solutions at mercury electrodes, I. Polarography and chronopotentiometry, Electroanal. Chem. Interfacial Electrochem. 18, 123–135 (1968).

I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun. 7, 97–100 (2005). DOI:10.1016/j.elecom.2004.11.012.

C. D. Rodrigues, N. R. de Tacconi, W. Chanmanee, K. Rajeshwar, Cathodic electrosynthesis of niobium oxide one-dimensional nanostructures with tailored dimensions, Electrochem. Solid State Lett. 13, B69–B72 (2010). DOI:10.1016/S0005-1098(98)00152-6.

D. A. Tkalenko, Makrokinetika katodnykh protsessov v gidroksidnykh i nitratnykh rasplavakh, Naukova Dumka, Kiev, 1993.

D. A. Tkalenko, Elektrokhimiya nitratnykh rasplavov, Naukova Dumka, Kiev, 1983.

I. Arsova, L. Arsov, N. Hebestreit, A. Anders, W. Plieth, Electrochemical formation of anodic oxide films on Nb surfaces: Ellipsometric and Raman spectroscopical studies, J. Solid State Electrochem. 11, 209–214 (2007). DOI:10.1007/s10008-005-0089-4.

A. G. Muñoz, G. Staikov, Electrodeposition of metals on anodized thin Nb films, J. Solid State Electrochem. 10, 329–336 (2006). DOI:10.1007/s10008-005-0090-y.



  • There are currently no refbacks.

Copyright (c) 2019 Nataša M Vukićević, Vesna S Cvetković, Ljiljana S Jovanović, Miroslav M Pavlović, Jovan N Jovićević

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.