Structure determination, vibrational bands and chemical shift assignments of 3-(4-(3-(2,5-dimethylphenyl)-3-methylcyclobutyl)thiazol-2-yl)-2-(o-tolyl)thiazolidin-4-one: A combined experimental and quantum chemical density-functional theory studies

Authors

  • Fatih Şen Yozgat Bozok University, Sorgun Vocational School, Department of Opticianry, Yozgat, Turkey.

DOI:

https://doi.org/10.20450/mjcce.2019.1679

Keywords:

Cyclobutane • Thiazole • Thiazolidine • SCXRD • IR and NMR

Abstract

This paper report is an analysis of the title compound by means of X-ray crystallography, FT-IR, NMR and DFT calculations, in the context of structural and spectral characterization. The crystal and molecular structures of the compound were determined by single-crystal X-ray diffraction (SCXRD). Fourier Transform Infrared (FTIR) spectrum was recorded in the range from 400 cm–1 to 4000 cm–1. The 1H and 13C nuclear magnetic resonance (NMR) spectra were also recorded. DFT calculations were employed to support X-ray molecular geometry and calculate IR and NMR (1H and 13C) spectral bands. The structural (bond lengths, bond angles, torsion angles) and spectral (vibrational modes and chemical shifts) parameters obtained from DFT levels (B3LYP/6-31G(d,p) and B3LYP/6-31G+(d,p)) were compared with experimental findings, and an excellent harmony between the two data was ascertained.

References

A. Cukurovali, İ. Yilmaz, S. Gur, C. Kazaz, Synthesis, antibacterial and antifungal activity of some new thiazolylhydrazone derivatives containing 3-substituted cyclobutane ring, Eur. J. Med. Chem. 41, 201–207 (2006). DOI: https://doi.org/10.1016/j.ejmech.2005.01.013.

M. Ahmedzade, C. Kirilmis, A. Cukurovali, N. Dilsiz, Synthesis and Antimicrobial Activity of NewThiazole-2(3H)-thiones Containing 1,1,3-Trisubstituted Cyclobu-tane, S. Afr. J. Chem. 56, 21–24 (2003).

M. Y. Cankılıç, L. Yurttaş, Study on the Antimicrobial Effects of Novel Thiazole Derivatives, Marmara Pharm. J. 21, 654–659 (2017).

DOI: https://doi.org/10.12991/marupj.323584

N. U. Guzeldemirci, O. Kucukbasmaci, Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety, Eur. J. Med. Chem. 45, 63–68 (2010).

DOI: https://doi.org/10.1016/j.ejmech.2009.09.024.

O. Bozdağ-Dündar, Ö. Özgen, A. Menteşe, N. Altanlar, O. Atlıc, E. Kendi, R. Ertan, Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2,4-dione de-rivatives, Bioorg. Med. Chem. 15, 6012–6017 (2007).

DOI: https://doi.org/10.1016/j.bmc.2007.06.049

M. Ceylan Unlusoy, O. Bozdağ-Dündar, N. Altanlar, R. Ertan, Synthesis and Antimicrobial Activity of Some New 3-Substituted Benzyl-5-(4-chloro-2-piperidin-1ylthiazole-5-yl-methylene)-thiazolidine-2,4-dione Deriv-atives, Turk. J. Chem. 30, 355–360 (2006).

Y. Song, X. Liu, N. Yang, G. Yang, Synthesis and Anti-fungal Activity of Some Thiazole Derivatives, Asian J. Chem. 25, 1849–1852 (2013).

V. Opletalova, J. Dolezel, J. Kunes, V. Buchta, M. Vejsova, M. Kucerova-Chlupacova, Synthesis and Anti-fungal Screening of 2-{[1-(5-Alkyl/arylalkylpyrazin-2-yl)ethylidene]hydrazono}-1,3-thiazolidin-4-ones, Mole-cules, 21, 1592 (2016).

DOI: https://doi.org/10.3390/molecules21111592.

A. Ževžikovienė, A. Ževžikovas, E. Tarasevičius, L. Šlepikas, K. Vitkevičius, Synthesis and Antimicrobial Activity of New 3-Allyl-1,3-Thiazolidin-4-Ones, Medici-na (Kaunas), 47, 78–84 (2011).

D. Asha, C. V. Kavitha, S. Chandrappa, D. S. Prasanna, K. Vinaya, Sathees C. Raghavan, K. S. Rangappa, Novel Ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate Derivatives: Synthesis and An-ticancer Activities, J. Cancer Ther. 1, 21–28 (2010).

DOI: https://doi.org/10.4236/jct.2010.11003.

W. Cai, A. Liu, Z. Li, W. Dong, X. Liu, N. Sun, Synthe-sis and Anticancer Activity of Novel Thiazole-5-Carboxamide Derivatives, Appl. Sci. 6, 8 (2016).

DOI: https://doi.org/10.3390/app6010008.

G. Turan-Zitouni, M. D. Altıntop, A. Ozdemir, Z. A. Kaplancıklı, G. A. Çiftçi, Halide E. Temel, Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents, Eur. J. Med. Chem. 107, 288–294 (2016).

DOI: https://doi.org/10.1016/j.ejmech.2015.11.002.

T. T Akshaya, V. B Arunlal, Dr. G. Babu, Dr. C. R. Biju., Synthesis, characterisation and invitro anticancer activity of thiazolidine-2,4-dione Derivatives, J. Drug Discov Ther. 2, 42–47 (2014).

Y. Chi, M. Nakamura, X. Zhao, T. Yoshizawa, W. Yan, F. Hashimoto, J. Kinjo, T. Nohara, S. Sakurada, Antino-ciceptive Activities of α-Truxillic Acid and β-Truxinic Acid Derivatives, Biol. Pharm. Bull. 29, 580–584 (2006).

DOI: https://doi.org/10.1248/bpb.29.580

F. A. Hassan, Synthesis, Characterization, Anti-inflam-matory, and Antioxidant Activities of Some New Thia-zole Derivatives, Int. J. Appl. Sci. Technol. 2, 180–187 (2012).

R. A. Waghmare, M. R. Bhosle, L. D. Khillare, R. A. Mane, Synthesis and Anti-Inflammatory Evaluation of New 5-Arylidene-3- Methylsulphonyl Thiazolidine-2, 4-Diones, World J. Pharm Pharm Sci. 4, 1171–1182 (2015).

A. Cukurovali, I. Yilmaz, M. Ahmedzade, Synthesis and Characterization of a New Cyclobutane-Substituted Schiff Base Ligand and its Co(II), Cu(II) and Ni(II) Complexes, Synth. React. Inorg. Met.-Org. Chem. 30, 843–853 (2000).

DOI: https://doi.org/10.1080/00945710009351803.

I. Yilmaz, A. Cukurovali, Spectral Characterization of a New Cyclobutane and Thiazole Substituted Schiff Base Ligand and Its Co(II), Cu(II), Ni(II), and Zn(II) Com-plexes, Spectrosc. Lett. 37, 59–72 (2004).

DOI: https://doi.org/10.1081/SL-120028423.

K. Dey, S. Sarkar, S. Mukhopadhyay, S. Biswas, Bijali Bikash Bhaumik, Synthesis, characterization and coordi-nation behavior of 2-(1-carboxyl-2-hydroxyphenyl) thia-zolidine, J. Coord. Chem. 59, 565–583 (2006).

DOI: https://doi.org/10.1080/00958970500358714.

S. Saydam, Synthesis and Characterisation of the New Thiazole Schiff Base 2-(2-Hydroxy) Naphthylideneami-nobenzothiazole and Its Complexes with Co(Ii), Cu(Ii), and Ni(Ii) Ions, Synth. React. Inorg. Met.-Org. Chem. 32, 437–447 (2002).

DOI: https://doi.org/10.1081/SIM-120003787.

F. Sen, M. Dincer, A. Cukurovalı, I. Yılmaz, (Z)-1-(3-Mesityl-3-methyl-cyclo-but-yl)-2-(morpholin-4-yl) etha-none oxime, Acta Cryst. E 67, o958–o959 (2011).

DOI: https://doi.org/10.1107/S1600536811009408.

F. Sen, M. Dincer, A. Cukurovalı, I. Yılmaz, 1,1'-Bis(3-methyl-3-phenyl­cyclo­but­yl)-2,2'-(aza­nedi­yl)diethanol, Acta Cryst. E 68, o1052 (2012).

DOI: https://doi.org/10.1107/S1600536812010203.

F. Sen, I. Yılmaz, M. Dincer, A. Cukurovalı, Structural Features of 2-(4,5-Diphenyl-4h-1,2,4-Triazol-3-Yl)Thio)-1-(3-Methyl-3-Phenylcyclobutyl) Ethanone: X-Ray Dif-fraction and DFT Calculations, J. Chil. Chem. Soc. 60, 2671–2676 (2015).

DOI: http://dx.doi.org/10.4067/S0717-97072015000400009

F. Sen, I. Yılmaz, M. Dincer, A. Cukurovalı, Experi-mental (X-ray Diffraction and FT-IR) and Quantum Chemical Studies (HF and DFT) of Ethyl 3-hydroxy-7-methyl3-(3-methyl-3-phenylcyclobutyl)-5-phenyl-3,5-dihydro-5Hthiazolo [3,2-a]pyrimidine-6-carboxylate, Hacettepe J. Biol. & Chem. 45, 175–186 (2017).

DOI: http://dx.doi.org/10.15671/HJBC.2017.150

F. Sen, O. Ekici, M. Dincer, A. Cukurovalı, A compara-tive study on 4-(4-(3-mesityl-3-methylcyclobutyl)thiazole-2-yl)-1-thia-4-azaspiro[4.5]decan-3-one: Experimental and density func-tional methods, J. Mol. Struct. 1086, 109–117 (2015).

DOI: https://doi.org/10.1016/j.molstruc.2014.12.088

F. Sen, M. Dincer, A. Cukurovalı, I. Yılmaz, N-[4-(3-methyl-3-mesityl-cyclobutyl)-thiazol-2-yl]-succinamic ac-id: X-ray structure, spectroscopic characterization and quantum chemical computational studies, J. Mol. Struct. 1046, 1–8 (2013).

DOI: https://doi.org/10.1016/j.molstruc.2013.04.039

F. Sen, M. Dincer, A. Cukurovalı, Synthesis, spectro-scopic characterization and quantum chemical computa-tional studies on 4-(3-methyl-3-phenylcyclobutyl)-2-(2-undecylidenehydrazinyl)thiazole, J. Mol. Struct. 1076, 1–9 (2014).

DOI: https://doi.org/10.1016/j.molstruc.2014.07.041

F. Sen, O. Ekici, M. Dincer, A. Cukurovalı, Spectroscop-ic and molecular modeling studies of N-(4-(3-methyl-3-phenylcyclobutyl)-3-phenylthiazole-2(3H)-ylidene)aniline by using experimental and density functional methods, J. Saudi Chem. Soc. 21, 377–389 (2017).

DOI: https://doi.org/10.1016/j.jscs.2015.05.004

F. Sen, M. Dincer, A. Cukurovalı, Structural and spectro-scopic characterization of 4-(3-methyl-3-phenylcyclobutyl)-2-(2-propylidenehydrazinyl)thiazole: A combined experimental and DFT analysis, Spectrochim Acta A 150, 257–267 (2015).

DOI: https://doi.org/10.1016/j.saa.2015.05.079

A. D. Becke, J. Chem. Phys. 98, 5648–5652 (1993).

DOI: http://dx.doi.org/10.1063/1.464913

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785–789 (1988).

DOI: https://doi.org/10.1103/PhysRevB.37.785

G. M. Sheldrick, SHELXS-97; Program for the Solution of Crystal Structures, University of Gottingen, (1997).

G. M. Sheldrick, SHELXL-97; Program for Crystal Structures Refinement, University of Gottingen, (1997).

L. J. Farrugia, WinGX and ORTEP for Windows: an update, J. Appl. Cryst. 45, 849–854 (2012).

DOI: https://doi.org/10.1107/S0021889812029111

A. L. Spek, Structure validation in chemical crystallog-raphy, Acta Crystallogr. D 65, 148–155 (2009).

DOI: https://doi.org/10.1107/S090744490804362X

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-ery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Men-nucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramil-lo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Aus-tin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannen-berg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Mar-tin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. John-son, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, CT, (2004).

L. J. Farrugia, ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Cryst. 30, 565 (1997).

DOI: https://doi.org/10.1107/S0021889897003117

B. Acar, I. Yilmaz, N. Çalıskan, A. Cukurovali, Experi-mental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl es-ter, J. M. Struct. 1139, 130–136 (2017).

DOI: https://doi.org/10.1016/j.molstruc.2017.03.034

T. Karakurt, A. Cukurovali, N. T. Subasi, I. Kani, Molec-ular structure and computational studies on 2-((2-(4-(3-(2,5-dimethylphenyl)-3-methylcyclobutyl)thiazol-2-yl)hydrazono)methyl)phenol monomer and dimer by DFT calculations, J. M. Struct. 1125, 433–442 (2016).

DOI: https://doi.org/10.1016/j.molstruc.2016.07.009

B. Ferah, I. Yılmaz, M. Dincer, A. Cukurovalı, A Com-parative Study on 2-(2-benzylidenehydrazinyl)-4-(3-Methyl-3-Phenylcyclobutyl) Thiazole: X-Ray, HF and DFT Studies, Anadolu Uni. J. Sci. Techn. B 4, 74–90 (2016).

DOI: https://doi.org/10.20290/btdb.37720

B. Ferah, I. Yılmaz, M. Dincer, A. Cukurovalı, Investiga-tion of electronic and molecular properties of 5-(3-Methyl-3-Phenylcyclobutyl)-N-Phenyl-3,6-Dihydro-2h-1,3,4-Thiadiazin-2-Imine by experimental and theoretical methods, Anadolu Uni. J. Sci. Techn. B 5, 56–69 (2017).

DOI: https://doi.org/10.20290/aubtdb.289631

P. B. Sarkar, S. P. Sengupta, Conformations of 4 com-pounds containing cyclopentane and cyclopentene rings, Z. Kristallogr. 168, 19–23 (1984).

DOI: https://doi.org/10.1524/zkri.1984.168.1-4.19

N. Calışkan, C. Dag, M. S. Soylu, A. Cukurovali, N. A. Koksal, 2-Amino-4-(3-methyl-3-p-xylylcyclo­butyl)-1,3-thiazole, Acta Cryst. E62, o174-o176 (2006).

DOI: https://doi.org/10.1107/S160053680504050X

N. Özdemir, M. Dinçer, A. Çukurovalı, O. Büyükgün-gör, Experimental and theoretical investigation of the mo-lecular and electronic structure of 5-(4-aminophenyl)-4-(3-methyl-3-phenylcyclobutyl) thiazol-2-amine, J. Mol. Model. 15, 1435–1445 (2009).

DOI: https://doi.org/10.1007/s00894-009-0509-y

A. P. Scott, L. Radom, Harmonic Vibrational Frequen-cies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem. 100, 16502–16513 (1996).

DOI: https://doi.org/10.1021/jp960976r

J. P. Merrick, D. Moran, L. Radom, An Evaluation of Harmonic Vibrational Frequency Scale Factors, J. Phys. Chem. A 111, 11683–11700 (2007).

DOI: https://doi.org/10.1021/jp073974n

R. Dennington II, T. Keith, J. Millam, Gauss View, Ver-sion 4.1.2, Semichem Inc., Shawnee Mission, KS, (2007).

M. Guiliano, G. Mille, T. Avignon, J. Chouteau, Analyse Vibrationnelle de la thiazolidine, J. Raman Spectrosc. 7, 214–224 (1978).

DOI: https://doi.org/10.1002/jrs.125007041

Downloads

Published

2019-12-30

How to Cite

Şen, F. (2019). Structure determination, vibrational bands and chemical shift assignments of 3-(4-(3-(2,5-dimethylphenyl)-3-methylcyclobutyl)thiazol-2-yl)-2-(o-tolyl)thiazolidin-4-one: A combined experimental and quantum chemical density-functional theory studies. Macedonian Journal of Chemistry and Chemical Engineering, 38(2), 183–196. https://doi.org/10.20450/mjcce.2019.1679

Issue

Section

Organic Chemistry