The novel modeling approach for the study of thermal degradation of PMMA/nanooxide systems
DOI:
https://doi.org/10.20450/mjcce.2019.1685Keywords:
PMMA, metal oxide nanoparticles, mathematical modeling, thermal stability, thermal decomposition kineticsAbstract
PMMA (poly(methyl methacrylate)) nanocomposites differing in their nature, size, and surface area were prepared containing one volume percent of silica, alumina or titania. These samples and pure PMMA were prepared in order to analyze how the presence of nanooxides affects the thermal stability and degradation kinetics of the materials. A detailed study of thermal degradation and thermal changes was performed by Simultaneous Thermogravimetry and Differential Scanning Calorimetry (SDT). The proposed mathematical model, including all three heating rates in one minimizing function, well fitted all TGA data obtained with a very high coefficient of correlation. This enabled an assessment of four decomposition steps of the PMMA samples and a calculation of their activation energies and individual contributions to total mass loss. The addition of the largest nanoparticles (titania) caused the highest activation energy for each DTG stage of the PMMA/nanooxide systems. The enhancement of head-to-head H–H bonding strength was achieved by addition of alumina and titania. The influence of the size and nature of nanoparticles on the glass transition temperature of prepared PMMA systems was also determined.
References
A. Anžlovar, Z. C. Orel, M. Žigon, Poly(methyl methac-rylate) composites prepared by in situ polymerization us-ing organophillic nano-to-submicrometer zinc oxide parti-cles, Eur. Polym. J., 46, 1216–1224 (2010).
DOI: 10.1016/J.EURPOLYMJ.2010.03.010.
H. Liu, H. Ye, T. Lin, T. Zhou, Synthesis and characteri-zation of PMMA/Al2O3 composite particles by in situ emulsion polymerization, Particuology, 6, 207–213 (2008). DOI: 10.1016/j.partic.2008.01.003.
A. Schoth, C. Wagner, L. L. Hecht, S. Winzen, R. Muñoz-Espí, H. P. Schuchmann, K. Landfester, Structure control in PMMA/silica hybrid nanoparticles by surface functionalization, Colloid Polym. Sci., 292, 2427–2437 (2014). DOI: 10.1007/s00396-014-3316-7.
S. N. Tripathi, P. Saini, D. Gupta, V. Choudhary, Electri-cal and mechanical properties of PMMA/reduced gra-phene oxide nanocomposites prepared via in situ polymerization, J. Mater. Sci., 48, 6223–6232 (2013). DOI: 10.1007/s10853-013-7420-8.
H. Wang, P. Xu, W. Zhong, L. Shen, Q. Du, Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities, Polym. Degrad. Stab., 87, 319–32 (2005).
DOI: 10.1016/j.polymdegradstab.2004.08.015.
W. Viratyaporn, R. L. Lehman, Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization, J. Therm. Anal. Calorim., 103, 267–273 (2011).
DOI: 10.1007/s10973-010-1051-y.
L.-H. Lee, W.-C. Chen, High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl meth-acrylate)−titania materials, Chem. Mater., 13, 1137–1142 (2001). DOI: 10.1021/cm000937z.
F. A. Alzarrug, M. M. Dimitrijević, R. M. Jančić Heine-mann, V. Radojević, D. B. Stojanović, P. S. Uskoković, R. Aleksić, The use of different alumina fillers for im-provement of the mechanical properties of hybrid PMMA composites, Mater. Des., 86, 575–581 (2015). DOI: 10.1016/j.matdes.2015.07.069.
A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M.V. Brundo, V. Privitera, G. Impellizzeri, Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications, Sci. Rep., 7, 40895 (2017). DOI: 10.1038/srep40895.
T. C. Chang, Y. T. Wang, Y. S. Hong, Y. S. Chiu, Or-ganic-inorganic hybrid materials. V. Dynamics and deg-radation of poly(methyl methacrylate) silica hybrids, J. Polym. Sci. Part A, Polym. Chem. 38 (2000) 1972–1980. DOI: 10.1002/(SICI)1099-0518(20000601)38:11<1972:: AID-POLA60>3.0.CO;2-5.
Z. H. Huang, K. Y. Qiu, The effects of interactions on the properties of acrylic polymers/silica hybrid materials pre-pared by the in situ sol-gel process, Polymer (Guildf), 38 (1997) 521–526.
DOI: 10.1016/S0032-3861(96)00561-7.
Y. T. Wang, T. C. Chang, Y. S. Hong, H. B. Chen, Ef-fect of the interfacial structure on the thermal stability of poly(methyl methacrylate)–silica hybrids, Thermochim. Acta. 397 (2003) 219–226.
DOI:10.1016/S0040-6031(02)00327-1.
M. L. Saladino, T. E. Motaung, A. S. Luyt, A. Spinella, G. Nasillo, E. Caponetti, The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA, Polym. Degrad. Stab., 97, 452–459 (2012).
DOI: 10.1016/j.polymdegradstab.2011.11.006.
T. C. Chang, Y. T. Wang, Y. S. Hong, Y. S. Chiu, Ef-fects of inorganic components on the structure and ther-mo-oxidative degradation of PMMA modified metal alkoxide–EAA complex, Thermochim. Acta., 390, 93–102 (2002). DOI: 10.1016/S0040-6031(02)00078-3.
A. Laachachi, M. Cochez, M. Ferriol, J. M. Lopez-Cuesta, E. Leroy, Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA), Mater. Lett., 59 36–39 (2005).
DOI: 10.1016/j.matlet.2004.09.014.
A. Laachachi, E. Leroy, M. Cochez, M. Ferriol, J. M. Lopez Cuesta, Use of oxide nanoparticles and or-ganoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate), Polym. Degrad. Stab., 89, (2005) 344–352.
DOI: 10.1016/j.polymdegradstab.2005.01.019.
A. Laachachi, M. Ferriol, M. Cochez, J.-M. Lopez Cues-ta, D. Ruch, A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate), Polym. Degrad. Stab., 94 1373–1378 (2009).
DOI: 10.1016/j.polymdegradstab.2009.05.014.
J. E. Brown, T. Kashiwagi, Gas phase oxygen effect on chain scission and monomer content in bulk poly(methyl methacrylate) degraded by external thermal radiation, Polym. Degrad. Stab., 52, 1–10 (1996).
DOI: 10.1016/0141-3910(95)00213-8.
T. Fateh, F. Richard, T. Rogaume, P. Joseph, Experi-mental and modelling studies on the kinetics and mecha-nisms of thermal degradation of polymethyl methacrylate in nitrogen and air, J. Anal. Appl. Pyrolysis., 120, 423–433 (2016). DOI: 10.1016/j.jaap.2016.06.014.
B. J. Holland, J. N. Hay, The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy, Polymer (Guildf)., 42, 4825–4835 (2001). DOI: 10.1016/S0032-3861(00)00923-X.
B. J. Holland, J. N. Hay, The value and limitations of non-isothermal kinetics in the study of polymer degrada-tion, Thermochim. Acta., 388, 253–273 (2002).
DOI: 10.1016/S0040-6031(02)00034-5.
J. D. Peterson, S. Vyazovkin, C. A. Wight, Kinetic Study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate), J. Phys. Chem. B., 103, 8087–8092 (1999). DOI: 10.1021/jp991582d.
O. Chiantore, M. P. Luda di Cortemiglia, M. Guaita, Changes of degree of polymerisation in the thermal deg-radation of poly(methyl methacrylate), Polym. Degrad. Stab., 24, 113–126 (1989).
DOI: 10.1016/0141-3910(89)90106-7.
M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, J. L. Mieloszynski, Thermal degradation of poly(methyl meth-acrylate) (PMMA): modelling of DTG and TG curves, Polym. Degrad. Stab., 79, 271–281 (2003).
DOI: 10.1016/S0141-3910(02)00291-4.
L. E. Manring, D. Y. Sogah, G. M. Cohen, Thermal deg-radation of poly(methyl methacrylate). 3. Polymer with head-to-head linkages, Macromolecules, 22, 4652–4654 (1989). DOI: 10.1021/ma00202a048.
O. Bera, M. Jovičić, J. Pavličević, B. Pilić, The influence of oxide nanoparticles on the kinetics of free radical me-thyl methacrylate polymerization in bulk, Polym. Com-pos., 34, 1342–1348 (2013). DOI: 10.1002/pc.22548.
C. A. Wilkie, TGA/FTIR: an extremely useful technique for studying polymer degradation, Polym. Degrad. Stab., 66, 301–306 (1999).
DOI: 10.1016/S0141-3910(99)00054-3.
W. Tang, X.-G. Li, D. Yan, Thermal decomposition ki-netics of thermotropic copolyesters made fromtrans-p-hydroxycinnamic acid and p-hydroxybenzoic acid, J. Appl. Polym. Sci., 91, 445–454 (2004).
DOI: 10.1002/app.13103.
J. Zhu, F. M. Uhl, A. B. Morgan, C. A. Wilkie, Studies on the Mechanism by Which the Formation of Nanocom-posites Enhances Thermal Stability †, Chem. Mater. 13, 4649–4654 (2001). DOI: 10.1021/cm010451y.
R. R. Madathingal, S. L. Wunder, Thermal degradation of poly(methyl methacrylate) on SiO2 nanoparticles as a function of SiO2 size and silanol density, Thermochim. Acta., 526, 83–89 (2011). DOI: 10.1016/j.tca.2011.08.026.
E. Džunuzović, M. Marinović-Cincović, J. Vuković, K. Jeremić, J. M. Nedeljković, Thermal properties of PMMA/TiO2 nanocomposites prepared by in-situ bulk polymerization, Polym. Compos., 30, 737–742 (2009). DOI: 10.1002/pc.20606.
P. Paik, K. K. Kar, Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: Effects of particle size, Polym. Degrad. Stab., 93, 24–35 (2008). DOI: 10.1016/j.polymdegradstab.2007.11.001.
J. H. Flynn, L. A. Wall, General treatment of the thermo-gravimetry of polymers, J. Res. Natl. Bur. Stand. Sect. A Phys. Chem., 70A (1966) 487.
DOI: 10.6028/jres.070A.043.
R. E. Lyon, An integral method of nonisothermal kinetic analysis, Thermochim. Acta., 297, 117–124 (1997).
DOI: 10.1016/S0040-6031(97)00158-5.
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.