Cu(II) and Cd(II) coordination polymers derived from pyrazine-2,3-dicarboxylato and 1-vinylimidazole ligands: Synthesis, characterization and hydrogen storage capacities
DOI:
https://doi.org/10.20450/mjcce.2019.1711Keywords:
Pyrazine-2, 3-dicarboxylato, 1-Vinylimidazole, Polymeric complex, Hydrogen storage, Bridging ligandAbstract
In this study, two new coordination polymers of Cu(II) and Cd(II) ions with pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole were synthesized. The structures of these coordination polymers were characterized with elemental analysis, infrared spectroscopy, thermal analysis, powder X-ray diffraction, and magnetic susceptibility techniques. According to the results of the thermal analysis, the coordination polymers that contained water molecules decomposed below 100 °C, and the final products for both coordination polymers were the related metal oxides in an oxygen atmosphere. Powder X-ray diffraction analysis revealed that the coordination polymers were in the crystalline form. The hydrogen storage capacities and surface areas of the coordination polymers were also determined. The highest hydrogen storage capacities were measured as 296 ml/g for the Cu(II) coordination polymer and 330 ml/g for the Cd(II) coordination polymer at approximately 75 bar and 75 K.
References
S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application, Royal Society of Chemistry, Cambridge, 2008.
M.-C. Hong, L. Chen, Design and Construction of Coordination Polymers, John Wiley & Sons, The United States of America, 2009.
J. L. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, Hydrogen sorption in functionalized metal−organic frameworks, J. Am. Chem. Soc. 126, 5666–5667 (2004). DOI: https://doi.org/10.1021/ja049408c
S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa, Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis, J. Am. Chem. Soc. 129, 2607–2614 (2007). DOI: https://doi.org/10.1021/ja067374y
R. Decadt, K. Van Hecke, D. Depla, K. Leus, D. Weinberger, I. Van Driessche, P. Van Der Voort, R. Van Deun, Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers, Inorg. Chem. 51, 11623–11634 (2012).
DOI: https://doi.org/10.1021/ic301544q
H.-L. Sun, Z.-M. Wang, S. Gao, Synthesis, crystal structures, and magnetism of cobalt coordination polymers based on dicyanamide and pyrazine-dioxide derivatives, Inorg. Chem. 44, 2169–2176 (2005).
DOI: https://doi.org/10.1021/ic048342j
L. Wang, M. Zheng, Z. Xie, Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise, J. Mater. Chem. B 6, 707–717 (2018). DOI: https://doi.org/10.1039/C7TB02970E
J. Duan, W. Jin, S. Kitagawa, Water-resistant porous coordination polymers for gas separation, Coord. Chem. Rev. 332, 48–74 (2017).
DOI: https://doi.org/10.1016/j.ccr.2016.11.004
M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Design and construction of coordination polymers with mixed-ligand synthetic strategy, Coord. Chem. Rev. 257, 1282–1305 (2013). DOI: https://doi.org/10.1016/j.ccr.2012.10.002
M. Zhang, Y.-P. Chen, H.-C. Zhou, Structural design of porous coordination networks from tetrahedral building units, CrystEngComm. 15, 9544–9552 (2013).
DOI: https://doi.org/10.1039/C3CE41105B
H.-Y. Lin, J. Luan, X.-L. Wang, J.-W. Zhang, G.-C. Liu, A.-X. Tian, Construction and properties of cobalt(II)/copper(II) coordination polymers based on N-donor ligands and polycarboxylates mixed ligands, RSC Adv. 4, 62430–62445 (2014).
DOI: https://doi.org/10.1039/C4RA12367K
H. Deng, S. Grunder, K. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science 336, 1018–1023 (2012).
DOI: https://doi.org/10.1126/science.1220131
M. Ž. Mijajlović, M. V. Nikolić, V. V. Jevtić, Z. R. Ratković, J. Milovanović, A. Arsenijević, B. Stojanović, S. B. Novaković, G. A. Bogdanović, S. R. Trifunović, G. P. Radić, Cytotoxicity of platinum(IV) and palladium(II) complexes with meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoic acid. Crystal structure of [Pd(1,2-dpheddp)] complex, Maced. J. Chem. Chem. Eng. 35, 79–86 (2016).
DOI: http://dx.doi.org/10.20450/mjcce.2016.729
S. L. James, Metal-organic frameworks, Chem. Soc. Rev. 32, 276–288 (2003).
DOI: https://doi.org/10.1039/B200393G
W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, Tuning the structure and function of metal–organic frameworks via linker design, Chem. Soc. Rev. 43, 5561–5593 (2014).
DOI: https://doi.org/10.1039/C4CS00003J
B.-H. Ye, M.-L. Tong, X.-M. Chen, Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands, Coord. Chem. Rev. 249, 545–565 (2005). DOI: https://doi.org/10.1016/j.ccr.2004.07.006
Y.-P. Gao, L. Guo, Y.-H. Lv, W. Dong, M. Jia, F. Chang, A series of 1-D, 2-D and 3-D coordination polymers self-assembled from a flexible dicarboxylate and mixed N-donor ligands: syntheses, structural diversity, and luminescent properties, J. Coord. Chem. 69, 3745–3761 (2016).
DOI: https://doi.org/10.1080/00958972.2016.1239087
X. Feng, W. Chen, B. Xiang, Syntheses, crystal structures and luminescent properties of two new Zn(II) coordination polymers based on a dicarboxylate and different imidazole-containing ligands, J. Coord. Chem. 69, 1551–1558 (2016).
DOI: https://doi.org/10.1080/00958972.2016.1179289
C.-S. Liu, J.-J. Wang, L.-F. Yan, Z. Chang, X.-H. Bu, E.C. Sañudo, J. Ribas, Copper(II), cobalt(II), and nickel(II) complexes with a bulky anthracene-based carboxylic ligand: syntheses, crystal structures, and magnetic properties, Inorg. Chem. 46, 6299–6310 (2007). DOI: https://doi.org/10.1021/ic070086y
S. Taşcıoğlu, A. Aydın, B. Yalçın, E. Kakı, Ö. Andaç, O. Büyükgüngör, B. Koşar, Synthesis and characterization of Cu(II) complexes of pyrazine-2,3-dicarboxylicacid, Polyhedron, 30, 2171–2180 (2011). DOI: https://doi.org/10.1016/j.poly.2011.05.018
R. Kitaura, K. Fujimoto, S.-I. Noro, M. Kondo, S. Kitagawa, A Pillared‐Layer Coordination Polymer Network Displaying Hysteretic Sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine‐2,3‐dicarboxylate; dpyg= 1,2‐Di (4‐pyridyl)glycol), Angew. Chem. Int. Ed. 41, 133–135 (2002).
DOI: https://doi.org/10.1002/1521-3757(20020104)114:1< 141::AID-ANGE141>3.0.CO;2-D
G. Günay, O. Z. Yeşilel, C. Darcan, S. Keskin, O. Büyükgüngör, Synthesis, crystal structures, molecular simulations for hydrogen gas adsorption, fluorescent and antimicrobial properties of pyrazine-2,3-dicarboxylate complexes, Inorg. Chim. Acta. 399, 19–35 (2013).
DOI: https://doi.org/10.1016/j.ica.2012.12.036
J.-W. Zhang, Y. Man, Y.-N. Ren, W.-H. Liu, B.-Q. Liu, Y.-P. Dong, Syntheses, structures, photoluminescent and magnetic properties of pyrazine-2,3-dicarboxylate-based cadmium-lanthanide/lanthanide coordination polymers tuned by CdII, Inorg. Chim. Acta. 488, 41–48 (2019). DOI: https://doi.org/10.1016/j.ica.2019.01.004
X.-H. Li, Q. Shi, M.-L. Hu, H.-P. Xiao, A crossing double chain {[Cu(PZDC2]·3(H2O)·2(IDZC)}n (H2PZDC= 2,3-pyrazinedicarboxylic acid, IDZC= imidazole cation), Inorg. Chem. Commun. 7, 912–914 (2004).
DOI: https://doi.org/10.1016/j.inoche.2004.05.017
F. Takusagawa, A. Shimada, The crystal structure of pyrazine-2,3-dicarboxylic acid dihydrate, Chem. Lett. 2, 1121–1122 (1973).
DOI: https://doi.org/10.1246/cl.1973.1121
T. Okubo, M. Kondo, S. Kitagawa, Synthesis, structure, and magnetic properties of one-dimensional copper(II) coordination polymer, [Cu(pyrazine-2,3-dicarboxylate) (H2O)2]·2H2On, Synth. Met. 85, 1661–1662 (1997).
DOI: https://doi.org/10.1016/S0379-6779(97)80386-4
M. Gryz, W. Starosta, J. Leciejewicz, Doubly bridged molecular ribbons in the structure of an ionic complex, hydronium zinc(II) pyrazine-2,3-dicarboxylate, J. Coord. Chem. 58, 931–935 (2005).
DOI: https://doi.org/10.1080/00958970500055492
J. W. Zhang, Y. N. Ren, J. X. Li, B. Q. Liu, Y. P. Dong, Syntheses, structures and magnetic properties of two series of 3d–4f heterometallic coordination polymers derived from pyrazine‐2,3‐dicarboxylic acid, Eur. J. Inorg. Chem. 2018, 1099–1106 (2018).
DOI: https://doi.org/10.1002/ejic.201701394
Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato, M. Sakata, T. C. Kobayashi, Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer, Angew. Chem. Int. Ed. 44, 920–923 (2005).
DOI: https://doi.org/10.1002/ange.200461895
H. Zhang, H. Li, P. Chen, P. Yan, Syntheses, structures, and photoluminescence properties of a series of 3D zn-ln heterometallic complexes with 2,3-pyrazine dicarboxylic acid as a bridging ligand, Z. Anorg. Allg. Chem. 644, 346–352 (2018).
DOI: https://doi.org/10.1002/zaac.201700392
O. Z. Yeşilel, A. Mutlu, C. Darcan, O. Büyükgüngör, Syntheses, structural characterization and antimicrobial activities of novel cobalt-pyrazine-2,3-dicarboxylate complexes with N-donor ligands, J. Mol. Struct. 964, 39–46 (2010).
DOI: https://doi.org/10.1016/j.molstruc.2009.10.048
G. Świderski, A. Z. Wilczewska, R. Świsłocka, K. H. Markiewicz, W. Lewandowski, Thermal and spectroscopic study of zinc, manganese, copper, cobalt and nickel 2,3-pyrazinedicarboxylate, Polyhedron, 162, 293–302 (2019).
DOI: https://doi.org/10.1016/j.poly.2019.01.071
R. R. Arrieta-Pérez, J. N. Primera-Pedrozo, J. Exley, A. J. Hernández-Maldonado, Synthesis and characterization of a Cu2(pzdc)2(bix) [pzdc:2,3-pyrazinedicarboxylate; bix:1,3-bis(imidazol-1-yl)benzene] porous coordination pillared-layer network, Cryst. Growth Des. 18, 1676–1685 (2018).
DOI: https://doi.org/10.1021/acs.cgd.7b01616
S. E. H. Etaiw, M. M. El-bendary, Cd(II) supra¬molecular coordination polymer incorporating pyrazine-2-carboxylic acid: Crystal structure, spectral characteristics and catalytic activity, J. Lumin. 199, 232–239 (2018).
DOI: https://doi.org/10.1016/j.jlumin.2018.03.041
R. A. Agarwal, N. K. Gupta, CO2 sorption behavior of imidazole, benzimidazole and benzoic acid based coordination polymers, Coord. Chem. Rev. 332, 100–121 (2017). DOI: https://doi.org/10.1016/j.ccr.2016.11.002
L. Liu, J. Ding, M. Li, X. Lv, J. Wu, H. Hou, Y. Fan, Structural variability, topological analysis and photocatalytic properties of neoteric Cd(II) coordination polymers based on semirigid bis(thiazolyl¬benzimidazole) and different types of carboxylic acid linkers, Dalton Trans. 43, 12790–12799 (2014).
DOI: https://doi.org/10.1039/c4dt01080a
S. Vasnin, R. Geanangel, Adducts of tin(II) chloride with imidazole and methylimidazoles, Inorg. Chim. Acta. 160, 167–170 (1989).
DOI: https://doi.org/10.1016/S0020-1693(00)80581-2
P. De Vaal, F. Hulsbergen, R. De Graaff, Structure of tetrakis(1-vinylimidazole) cobalt(II) dichloride, [Co(C5H6N2)4]Cl2, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39, 1543–1544 (1983).
DOI: https://doi.org/10.1107/S0108270183009191
S. Ghosh, F. Ahmed, G. G. Hossain, D. T. Haworth, S. E. Kabir, Reactivity of [Re2(CO)8 (MeCN)2] with 1-vinylimidazole: X-ray structures of [Re2(CO)8{η1-NC3H3N (CH=CH2)}2] and [ReCl2(CO)2{η1-NC3H3N (CH=CH2)}2], J. Chem. Crystallogr. 39, 702–707 (2009). DOI: https://doi.org/10.1007/s10870-009-9536-x
K. Kurdziel, T. Głowiak, J. Jezierska, Complexes of some transition metal ions with 2-methyl-1-vinylimidazole in aqueous solution and the solid state, J. Chem. Soc., Dalton Trans., 1095–1100 (2000).
DOI: https://doi.org/10.1039/A908718D
H. Yilmaz, O. Andac, S. Gorduk, Synthesis, characterization, and hydrogen storage capacities of polymeric squaric acid complexes containing 1-vinylimidazole, Polyhedron. 133, 16–23 (2017).
DOI: https://doi.org/10.1016/j.poly.2017.05.014
H. Yilmaz, S. Gorduk, O. Andac, Polymeric Ni(II) and Cu(II) complexes based on squaric acid and 1-vinylimidazole: Structural studies and hydrogen adsorption properties, Inorg. Chim. Acta. 469, 154–163 (2018). DOI: https://doi.org/10.1016/j.ica.2017.09.026
O. Andac, S. Gorduk, H. Yilmaz, Synthesis, characterization and H2 adsorption performances of polymeric Co(II) and Ni(II) complexes of pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole, J. Iran. Chem. Soc. 15, 1699–1708 (2018).
DOI: https://doi.org/10.1007/s13738-018-1367-2
H. Yilmaz, O. Andac, A novel zinc(II) complex containing square pyramidal, octahedral and tetrahedral geometries on the same polymeric chain constructed from pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole, J. Chem. Sci. 130, 32 (2018).
DOI: https://doi.org/10.1007/s12039-018-1436-1
O. Z. Yeşilel, A. Mutlu, O. Büyükgüngör, Novel dinuclear and polynuclear copper(II)-pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N,N,N′,N′-tetramethylethylenediamine and 2,2′-bipyridine, Polyhedron, 28, 437–444 (2009). DOI: https://doi.org/10.1016/j.poly.2008.11.044
H. W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review, Electrochim. Acta. 128, 368–392 (2014).
DOI: https://doi.org/10.1016/j.electacta.2013.10.190
M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Hydro-gen storage in metal–organic frameworks, Chem. Rev. 112, 782–835 (2011).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.