CO2/N2 Separation by Supported Ionic Liquid Membranes Based on Tubular Ceramic Support Impregnated with Selected Ionic Liquid

Zenon Ziobrowski, Adam Rotkegel

Abstract


The separation of CO2/N2  by supported ionic liquid membranes (SILMs) is presented. SILMs have been developed by impregnation of the ceramic support nanopores of  commercial PDMS (polidimethylosiloxane) membranes (made by Pervatech BV) and commercial microfiltration membranes (made by Inopor) with 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Comparison of separation efficiency of SILMs prepared on the same ceramic support shows that SILMs based on PDMS membranes show good stability and very high CO2/N2 selectivity. Yhe obtained results present an inexpensive alternative in selective CO2/N2 separation by SILMs, especially when the choice of selectivity is the first priority. The comparison with Robeson upper bond correlation and literature data shows that applying the ionic liquid and appropriate impregnating method to the PDMS membranes results in significant improvement of separation performance.

Keywords


CO2/N2 separation; supported ionic liquid membranes (SILMs); PDMS

Full Text:

PDF

References


W.M. Budzianowski, Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review, Int. J. Global Warming, 7(2), 184-225, (2015)

Y. Zhang, X. Ji, Y. Xie, X. Lu, Screening of conventional ionic liquids for carbon dioxide capture and separation, Applied Energy, 162, 1160-1170, (2016)

P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario:

Consequences and alternatives, Desalination; 380, 93-99, (2016)

J.E. Bara, Ionic liquids for post combustion CO2 capture, in: Absorption based post-combustion capture of carbon dioxide, P.H.M. Feron (Ed), Woodhed Publishing, Duxford, 2016

M. Hasib-ur-Rahmana, M. Siaj, F. Larachia, Ionic liquids for CO2 capture - Development and Progress, Chemical Engineering and Processing, 49, 313-322, (2010)

B. Zhao, Y. Sun, Y. Yuan, J. Gao, S. Wang, Y. Zhuo, C. Chen, Study on corrosion in CO2 chemical absorption process using amine solution, Energy Proced., 4, 93-100, (2011).

IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change. B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, (Eds.), Cambridge University Press, New York, 2005

B. Schäfer, A.E. Mather, K.N. Marsh, Enthalpies of solution of carbon dioxide in mixed solvents, Fluid Phase Equilib., 194, 929-935, (2002).

R.E. Baltus et al., Examination of the potential of ionic liquids for gas separations, Sep. Sci. Technol., 40(1–3), 525-541, (2005).

J. Blatha, N. Deublerb, T. Hirtha, T. Schiestelb, Chemisorption of carbon dioxide in imidazolium based ionic liquids with carboxylic anions, Chemical Engineering Journal, 181-182, 152-158, (2012).

Y. Xie, Y. Zhang, X. Lu, X. Ji, Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids, Applied Energy, 136, 325-335, (2014).

M.B. Shiflett, D.W. Drew, R.A. Cantini, A. Yokozeki, Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate. Energy Fuels, 24, 578-579, (2010).

A. Yokozeki, M.B. Shiflett, L.M. Grieco, T. Foo, Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids, J.Phys.Chem.B., 112, 16654–16663, (2008).

P. Scovazzo, J. Kieft, D.A. Finan, C. Koval, D. DuBois, R. Noble, Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes, J.Membr.Sci., 238, 57–63, (2004).

]15] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind.Eng.Chem.Res., 48 2739–2751, (2009).

P. Cserjési, N. Nemestóthy, K. Bélafi-Bakó, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J.Membr.Sci., 349, 6–11, (2010).

L.A. Neves, J.G. Crespo, I.M. Coelhoso, Gas permeation studies in supported ionic liquid membranes, J. Membr. Sci., 357, 160–170, ( 2010).

P. Jindaratsamee, Y. Shimoyama, H. Morizaki, A. Ito, Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes, J.Chem.Thermodyn., 43, 311–314, (2011).

E. Santos, J. Albo, A. Irabien, Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: Influence of the temperature, J. Membr. Sci., 452, 277– 283, (2014).

J. Albo, T. Yoshioka, T. Tsuru, Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation, Separation and Purification Technology, 122, 440–448, (2014).

C.E. Sánchez Fuentes, D. Guzmán-Lucero, M. Torres-Rodriguez, N.V. Likhanova, J. Navarrete Bolaños, O. Olivares-Xometl, I.V. Lijanova, CO2/N2 separation using alumina supported membranes based on new functionalized ionic liquids, Separation and Purification Technology, 182, 59–68, (2017).

Y.F. Liu, Q.Q. Xu, P. Cai, M.Y. Zhen, X.Y. Wang, J.Z. Yin, Effects of operating parameters and ionic liquid properties on fabrication of supported ionic liquid membranes based on mesoporous -Al2O3 supports, J. Membr. Sci., 545, 176-184, (2018).

D.S. Karousos, A.I. Labropoulos, A. Sapalidis, N.K. Kanellopoulos, B. Iliev, T.J.S. Schubert, G.E. Romanos, Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas, Chemical Engineering Journal, 313, 777–790, (2017).

Y.F. Liu, Q.Q Xu, X.Y. Wang, M.Y. Zhen, J.Z. Yin, Preparation of supported ionic liquid membranes using supercritical fluid deposition based on γ-alumina membrane and imidazolium ionic liquids, The Journal Of Supercritical Fluids, 139, 88–96, (2018).

D.S. Karousos, A.I. Labropoulos, O. Tzialla, K. Papadokostaki, M. Gjoka, K.L. Stefanopoulos, K.G. Beltsios, B. Iliev, T.J.S. Schubert, G.E. Romanos, Effect of a cyclic heating process on the CO2/N2 separation performance and structure of a ceramic nanoporous membrane supporting the ionic liquid 1-methyl-3-octylimidazolium tricyanomethanide, Separation and Purification Tech., 200, 11–22, (2018).

M.B. Shiflett, D.J. Kasprzak, A. Yokozeki, Phase behavior of Carbon dioxide - [bmim][Ac] mixtures, J.Chem.Thermodyn., 40, 25–31, (2008).

M.B. Shiflett, A. Yokozeki, Phase behavior of carbon dioxide in ionic liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] [emim][Tri- fluoroacetate] mixtures, J.Chem.Eng.Data, 54, 108–114, (2009).

M.B. Shiflett, B.A. Elliott, A.M.S. Niehaus, A. Yokozeki, Separation of N2O and CO2 using room-temperature ionic liquid [bmim][Ac], Sep.Sci.Technol., 47, 411–421, (2012).

M.B. Shiflett, A.M.S. Niehaus, B.A. Elliott, A. Yokozeki, Phase behavior of N2O and CO2 in room-temperature ionic liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN], Int.J.Thermo-phys., 33, 412–436, (2012).

P. Luis, L.A. Neves, C.A.M. Afonso, I.M. Coelhoso, J.G. Crespo, A. Garea, A. Irabien, Facilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs), Desalination, 245, 485–493, (2009).

M.G. Freire, A.R.R. Teles, M.A.A. Rocha, B. Schroder, C.M.S.S, Neves, P.J. Carvalho, D.V. Evtuguin, L.M.N.B.F. Santos, J.A.P. Coutinho, Thermophysical characterization of ionic liquids able to dissolve biomass, J. Chem. Eng. Data, 56, 4813–4822, (2011).

R.E. Baltus, R.M. Counce, B.H. Culbertson, H. Luo, D.W. Depaoli, S. Dai, D.C. Duckworth, Examination of the potential of ionic liquids for gas separations, Sep. Sci. Technol., 40, 525–541, (2005).

S.H. Barghi, M. Adibi, D. Rashtchian, An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: investigation of temperature fluctuations effects, J. Membr. Sci., 362, 346–352, ( 2010).

R. Kreiter, J.P. Overbeek, L.A. Correia, J.F. Vente, Pressure resistance of thin ionic liquid membranes using tailored ceramic supports, J. Membr. Sci., 370, 175–178, (2011).

J.J. Close, K. Farmer, S.S. Moganty, R.E. Baltus, CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: effect of the support on separation performance, J. Membr. Sci., 390–391, 201–210, (2012).

L.M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390–400, (2008).




DOI: http://dx.doi.org/10.20450/mjcce.2020.1721

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Zenon Ziobrowski, Adam Rotkegel

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.