Crystal structures of the bis-bidentate N2S2 Schiff base ligand and its copper(I) coordination polymer

Aliakbar Dehno Khalaji, Seyyed Javad Peyghoun, Michal Dusek, Monika Kucerakova, Alireza Akbari, Nourollah Feizi


A new flexible bis-bidentate N2S2 Schiff base ligand (2,4-Cl-ba)2dapte = N,-bis-(2,4-dichlorobenzaldehyde)-1,2-di(o-iminophenylthio)ethane and its copper(I) coordination polymer [Cu2(μ-I)2(μ-(2,4-Cl-ba)2dapte)]n, were synthesized and characterized by CHN elemental analysis, FT-IR and UV-Vis spectroscopy and single-crystal X-ray diffraction. The molecule of (2,4-Cl-ba)2dapte adopts a trans conformation of the 1,2-di(o-iminophenylthio)ethane unit. The (2,4-Cl-ba)2dapte acts as a bis-bidentate ligand with two iminic nitrogen and two sulfur atoms, coordinating to copper(I) ions in an anti-form leading to the dinuclear Cu2(μ-(2,4-Cl-ba)2dapte) groups. These groups are then bridged by two iodide anions to form a copper(I) coordination polymer [Cu2(μ-I)2(μ-(2,4-Cl-ba)2dapte)]n. The coordination geometry around the copper(I) ions is a distorted tetrahedron. Finally, a nano-sized form of the copper(I) coordination polymer [Cu2(μ-I)2(μ-(2,4-Cl-ba)2dapte)]n was prepared by an ultrasonic bath assisted process and characterized by elemental analysis, FT-IR and SEM.


bis-bidentate ligand; cooper(I) coordination polymer; single-crystal; distorted tetrahedral coordination; nano-sized material; crystal structure

Full Text:



C. Hopa, I. Cokay, Designing a heterotrinuclear CuII—NiII—CuII complex from a mononuclear CuII Schiff base precursor with dicyanamide as a coligand: synthesis, crystal structure, thermal and photo¬luminescence proper-ties, Acta Crystallogr. C72, 601–606 (2016).

DOI: 10.1107/S205322961600944X

E. Gungor, A new stepped tetra¬nuclear copper(II) com-plex: synthesis, crystal structure and photoluminescence properties, Acta Crystallogr. C73, 393–398 (2017). DOI: 10.1107/S2053229617004946

P. Pandey, A. Verma, K. Bretosh, J. P. Sutter, S. S. Sunkari, Template directed synthesis of half condensed Schiff base complexes of Cu(II) and Co(III): Structural and magnetic studies, Polyhedron 164, 80–89 (2019). DOI: 10.1016/j.poly.2019.02.037

R. Egekenze, Y. Gultneh, R. Butcher, Catalysis of alkene epoxidation by manganese(II) and (III) complexes of both Schiff base and reduced Schiff base ligands utilizing envi-ronmentally benign H2O2, Polyhedron 144, 198–209 (2018). DOI: 10.1016/j.poly.2018.01.008

A. N. Gusev, V. F. Shul'gin, E. V. Braga, I. Nemec, W. Linert, Synthesis and photophysical properties of Zn(II) Schiff base complexes possessing strong solvent-dependent solid-state fluorescence, Polyhedron 155, 202–208 (2018). DOI: 10.1016/j.poly.2018.08.019

M. Shabbir, Z. Akhter, H. Ismail, B. Mirza, Synthetic bioactive novel ether based Schiff bases and their cop-per(II) complexes, J. Mol. Struct. 1146, 57–61 (2017). DOI: 10.1016/j.molstruc.2017.05.

M. Shabbir, Z. Akhter, I. Ahmad, S. Ahmed, M. Bolte, H. Ismail, B. Mirza, Ferrocene-based Schiff bases copper (II) complexes: Synthesis, characterization, biological and electrochemical analysis, Inorg. Chim. Acta 463, 102–111 (2017). DOI: 10.1016/j.ica.2017.04.034

D. Y. Huanga, H. M. Haoa, P. F. Yaoa, X. H. Qina, F. P. Huanga, Q. Yua, H. D. Bian, CuIX (X=Cl,Br,I) inor-ganic networks separated and stabilized by a mercapto-tetrazole ligand, Polyhedron 97, 260–267 (2015).

DOI: 10.1016/j.poly.2015.05.030

C. Hopa, I. Cokay, Synthesis, structural characterization and thermal properties of a new copper(II) one-dimensional coordination polymer based on bridging N,N′-bis(2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine and dicyanamide ligands, Acta Crystallogr. C72, 149–154 (2016).

DOI: 10.1107/S2053229616000978

S. Solihah Khaidir, A. Mohd Tajuddin, K. Ramasamy, B.M.Yamin, Synthesis, characterization and anticancer activity of mono- and dinuclear Ni(II) and Co(II) com-plexes of a Schiff base derived from o-vanillin, Polyhe-dron 161, 84-92 (2019).

DOI: 10.1016/j.poly.2018.12.055

A. Hazari, C. Diaz, A. Ghosh, H-bond assisted coordina-tion bond formation in the 1D chains based on azido and phenoxido bridged tetranuclear Cu(II) complexes with re-duced Schiff base ligands, Polyhedron 142, 16–24 (2018). DOI: 10.1016/j.poly.2017.12.022

Y. Jiang Manna, L. Daliang, L. Xi-Ming, S. Xiaohong Chang, Mixed μ-azido-Schiff-base cyclometallated Pd(II) complexes as a template for novel palladacycles bearing bridging carbodiimido, tetrazolato ligands, and tetrazole-thiolato linkers, J. Organomet. Chem. 871, 103–110 (2018).

DOI: 10.1016/j.jorganchem.2018.06.009

A. A. Khandar, R. J. Butcher, M. Abedi, S. A. Hosseini-Yazdi, M. Akkurt, M. N. Tahir, Synthesis, characteriza-tion and crystal structures of dinuclear macrocyclic Schiff base copper(I) complexes bearing different bridges, Poly-hedron 29, 3178–3182 (2010).

DOI: 10.1016/j.poly.2010.08.031

J. Keegan, P. E. Kruger, M. Nieuwenhuyzen, N. Martin, Molecular Box versus Helicate: Selective synthesis of macrocyclic [Cu2L2]2+ and helical [Cu2L3]4+ species, Cryst. Growth Des. 2, 329–332 (2002).

DOI: 10.1021/cg025534l

A. D. Khalaji, M. Amirnasr, R. Welter, Synthesis and X-ray crystal structure of the dinuclear copper(I) complex [Cu2((Me-Pk)2En)(PPh3)4](ClO4)2·2CHCl3, Russ. J. Coord. Chem. 36, 835–837 (2010).

DOI: 10.1134/S1070328410110084

P. K. Pal, S. Chowdhury, P. Purkayastha, D. A. Tocher, D. Datta, A novel double-stranded dinuclear copper(I) helicate having a photoluminescent CuI2N8 chromophore, Inorg. Chem. Commun. 3, 585–589 (2000).

DOI: 10.1016/S1387-7003(00)00147-7

X. H. Zhou, T. Wu, D. Li, Structural variations and spec-troscopic properties of copper(I) complexes with bis(Schiff base) ligands, Inorg. Chim. Acta 359, 1442–1448 (2006). DOI: 10.1016/j.ica.2005.10.031

L. J. Childs, J. Malina, B. E. Rolfsnes, M. Pascu, M. J. Prieto, M. J. Broome, P. M. Rodger, E. Sletten, V. Moreno, A. Rodger, M. J. Hannon, A DNA‐Binding Copper(I) Metallosupramolecular Cylinder that Acts as an Artificial Nuclease, Chem. Eur. J. 12, 4919–4927 (2006). DOI: 10.1002/chem.200600060

A. D. Khalaji, S. J. Peyghoun, A. Akbari, N. Feizi, M. Dusek, V. Eigner, 1D polymeric copper(I) complex [Cu2(μ-(2,6-Cl-ba)2en)(μ-I)2]n with exceptionally short Cu-Cu distance: Synthesis, characterization, thermal study and crystal structure, J. Mol. Struct. 1127, 511–514 (2017). DOI: 10.1016/j.molstruc.2016.07.097

M. Ghorbani, A. D. Khalaji, N. Feizi, A. Akbari, V. Eigner, M. Dusek μ2-Oxido bridged dinuclear vanadi-um(V) complex: Synthesis and characterization, J. Mol. Struct. 1130, 442–446 (2017).

DOI: 10.1016/j.molstruc.2016.10.024

M. Morshedi, M. Amirnasr, A. M. Z. Slawin, J. D. Woollins, A. D. Khalaji, Synthesis and coordination chemistry of new tetradentate N2S2 donor Schiff-base lig-and ca2-dapte: Mononuclear and dinuclear copper(I) com-plexes [Cu(ca2dapte)]ClO4 and [{Cu(PPh3)(X)}2(ca2dapte)] (X = I and Br), Polyhedron 28, 167–171 (2009).

DOI: 10.1016/j.poly.2008.10.018

M. Amirnasr. M. Rasouli, K. Mereiter, Copper(I) com-plexes of new N2S2 donor Schiff-base ligands derived from 1,2-bis-(2-amino-phenylsulfanyl)ethane, Inorg. Chim. Acta 404, 230–235 (2013).

DOI: 10.1016/j.ica.2013.04.007

M. Morshedi, M. Amirnasr, S. Triki, A. D. Khalaji, New (NS)2 Schiff base with a flexible spacer: Synthesis and structural characterization of its first coordination polymer [Cu2(μ-I)2(μ-(thio)2dapte)]n (1), Inorg. Chim. Acta 362, 1637–1640 (2009). DOI: 10.1016/j.ica.2008.07.002

L. Palatinus, G. Chapuis, SUPERFLIP – a computer pro-gram for the solution of crystal structures by charge flip-ping in arbitrary dimensions, J. Appl. Crystallogr. 40, 786–790 (2007). DOI: 10.1107/S0021889807029238

V. Petricek, M. Dusek, L. Palatinus, Crystallographic Computing System JANA2006: General features, Z. Kristallogr. 229, 345–352 (2014).

DOI: 10.1515/zkri-2014-1737

Diamond Crystal and Molecular Structure Visualization. Crystal Impact – Brandenburg, K., Putzm H. & Rathaus-gasse, G. R. 30, D-53111 Bonn.



  • There are currently no refbacks.

Copyright (c) 2019 Aliakbar Dehno Khalaji, Seyyed Javad Peyghoun, Michal Dusek, Monika Kucerakova, Alireza Akbari, Nourollah Feizi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.