The Role of the Aluminum Source on the Physicochemical Properties of γ-AlOOH Nanoparticles

Rafael Romero Toledo, Luis M. Anaya Esparza, J. Merced Martínez Rosales

Abstract


The effect on the physicochemical properties of aluminum salts on the synthesis of γ-AlOOH nanostructures has been investigated in detail using a hydrolysis-precipitation method. X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), were used to characterize the synthesized samples. The specific surface area, pore size distribution and pore diameter of the different γ-AlOOH structures were discussed by the N2 adsorption-desorption analysis. According to the results of the nanostructure, characterization revealed that for synthesized γ-AlOOH nanostructures from AlCl3 and Al(NO3)3, obvious XRD peaks corresponding to the bayerite phase are found indicating an impure γ-AlOOH phase. Furthermore, the nitrogen adsorption-desorption analysis indicated that the obtained γ-AlOOH nanoparticles from Al2(SO4)3 of technical grade (95.0 % of purity) and low cost, possess a high BET surface area of approximately 350 m2/g, compared to the obtained nanostructures from aluminum sources reactive grade, which was attributed to the presence of Mg (0.9 wt.%) in its nanostructure.


Keywords


nanofibers; pseudoboehmite; aluminum source; hydrolysis/precipitation;

Full Text:

PDF

References


J. A. Kaddissy, S. Esnouf, D. Saffré, J. P. Renault, Effi-cient hydrogen production from irradiated aluminum hy-droxides, Int. J. Hydrogen. Energ., 44, 3737–3743 (2019).

DOI: https://doi.org/10.1016/j.ijhydene.2018.12.089

M. Sobhani, H. Tavakolia, M. D. Chermahini, M. Kazazi, Preparation of macro-mesoporous γ-alumina via biology gelatin assisted aqueous sol-gel process, Ceram. Int., 45, 1385–1391 (2019).

DOI: https://doi.org/10.1016/j.ceramint.2018.09.056

J. H. Roque Ruiz, N. A. Medellín Castillo, S. Y. Reyes López, Fabrication of α-alumina fibers by sol-gel and electrospinning of aluminum nitrate precursor solutions, Results Phys., 12, 193–204 (2019).

DOI: https://doi.org/10.1016/j.rinp.2018.11.068

Z. Yang, C. Qi, X. Zheng, J. Zheng, Synthesis of Ag/γ-AlOOH nanocomposites and their application for electro-chemical sensing, J. Electroanal. Chem., 754, 138–142 (2015).

DOI: https://doi.org/10.1016/j.jelechem.2015.07.022

F. Chen, F. Wang, Q. Li, C. Cao, X. Zhang, H. Ma, Y. Guo, Effect of support (Degussa P25 TiO2, anatase TiO2, γ-Al2O3, and AlOOH) of Pt-based catalysts on the for-maldehyde oxidation at room temperature, Catal. Com-mun., 99, 39–42 (2017).

DOI: https://doi.org/10.1016/j.catcom.2017.05.019

H. Hou, Y. Zhu, G. Tang, Q. Hu, Lamellar γ-AlOOH architectures: Synthesis and application for the removal of HCN, Mater. Charact., 68, 33–41 (2012).

DOI: https://doi.org/10.1016/j.matchar.2012.03.001

S. Roy, S. Bardhan, K. Pal, S. Ghosh, P. Mandal, S. Das, S. Das, Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles, J. Alloy Compd., 763, 749–758 (2018).

DOI: https://doi.org/10.1016/j.jallcom.2018.05.356

L. Liu, W. Huang, Z. Gao, L, Yin. Synthesis of AlOOH slurry catalyst and catalytic activity for methanol dehydra-tion to dimethyl ether, J. Ind. Eng. Chem., 18, 123–127 (2012).

DOI: https://doi.org/10.1016/j.jiec.2011.11.079

H. Yanmei, G. Zhihua, H. Wei, Effects of AlOOH Struc-ture on the Reaction of Methanol and Carbon Monoxide, Chem. J. Chinese U., 38, 823–829 (2017).

DOI: http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20160 862

B. Bai, H. Bai, L. Zhang, W. Huang, Catalytic activity of γ-AlOOH (0 0 1) surface in syngas conversion: Probing into the mechanism of carbon chain growth, Appl. Surf. Sci., 455, 123–131 (2018).

DOI: https://doi.org/10.1016/j.apsusc.2018.05.174

S. Nishimura, S. Ohmatsu, K. Ebitani, Selective synthesis of 3-methyl-2-cyclopentenone via intramolecular aldol condensation of 2,5-hexanedione with γ-Al2O3/AlOOH nanocomposite catalyst, Fuel Process. Technol., 196, 106185 (2019).

DOI: https://doi.org/10.1016/j.fuproc.2019.106185

G. Munusamy, K. Varadharajan, S. Narasimhan, U. G. Thangapandiyan, Investigation of γ-AlOOH and NiWO4-coated boehmite micro/nanostructure under UV/visible light photocatalysis, Res. Chem. Intermediat., 44, 1–20 (2018).

DOI: https://doi.org/10.1007/s11164-018-3588-5

Z. Tang, J. Liang, X. Li, J. Li, H. Guo, Y. Liu, C. Liu, Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route, J. Solid State Chem., 202, 305–314 (2013).

DOI: https://doi.org/10.1016/j.jssc.2013.03.049

X. Wu, D. Wang, Z. Hu, G. Gu, Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures, Ma-ter. Chem. Phys., 109, 560–564 (2008).

DOI: https://doi.org/10.1016/j.matchemphys.2008.01.004

T. K. Vo, H. K. Park, C. W. Nam, S. D. Kimb, J. Kim, Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(VI) adsorption, J. Ind. Eng. Chem., 60, 485–492 (2018).

DOI: https://doi.org/10.1016/j.jiec.2017.11.036

S. O. Kazantsev, A. S. Lozhkomoev, E. A. Glazkova, I. Gotman, E. Y. Gutmanas, M. I. Lerner, S. G. Psakhie, Preparation of aluminum hydroxide and oxide nanostruc-tures with controllable morphology by wet oxidation of AlN/Al nanoparticles, Mater. Res. Bull., 104, 97–103 (2018).

DOI: https://doi.org/10.1016/j.materresbull.2018.04.011

X. Bokhimi, J. A. Toledo Antonio, M. L. Guzman Cas-tillo, F. Hernandez Beltran, Relationship between crystal-lite size and bond lengths in boehmite, J. Solid State Chem., 159, 32–40 (2001).

DOI: https://doi.org/10.1006/jssc.2001.9124

L. Yixuan, L. Chenxia, D. Degang, D. Bin, W. Le, X. Shiqing, Properties of boehmite (γ-AlOOH) and Eu3+-doped boehmite synthesized by hydrothermal method, Optik, 154, 171–176 (2018).

DOI: https://doi.org/10.1016/j.ijleo.2017.09.093

A. Wasti, M. A. Awan, Adsorption of textile dye onto modified immobilized activated alumina, J. Assoc. Arab U. Basic Appl. Sci., 20, 26–31 (2016).

DOI: https://doi.org/10.1016/j.jaubas.2014.10.001

F. Karouia, M. Boualleg, M. Digne, P. Alphonse, Control of the textural properties of nanocrystalline boehmite (γ-AlOOH) regarding its peptization ability, Powder Tech-nol., 237, 602–609 (2013).

DOI: https://doi.org/10.1016/j.powtec.2012.12.054

D. Panias, A. Krestou, Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions, Powder Technol., 175, 163–173 (2007).

DOI: https://doi.org/10.1016/j.powtec.2007.01.028

R. Romero Toledo, V. Ruíz Santoyo, D. Moncada Sánchez, M. Martínez Rosales, Effect of aluminum pre-cursor on physicochemical properties of Al2O3 by hy-drolysis/precipitation method, Nova Sci., 20, 83–99 (2018). DOI: https://doi.org/10.21640/ns.v10i20.1217

S. Sangita, N. Nayak, C. Ranjan Panda, Extraction of aluminium as aluminium sulphate from thermal power plant fly ashes, T. Nonferr. Metal Soc., 27, 2082–2089 (2017).

DOI: https://doi.org/10.1016/S1003-6326(17)60231-0

K. Amin Matori, L. Chee Wah, M. Hashim, I. Ismail, M. H. Mohd Zaid, Phase transformations of α-alumina made from waste aluminum via a precipitation technique, Int. J. Mol. Sci., 13, 16812–16821 (1996).

DOI: 10.3390/ijms131216812

M. Yuan, X. Qiao, J. Yu, Phase equilibria of AlCl3 + FeCl3 + H2O, AlCl3 + CaCl2 + H2O, and FeCl3 + CaCl2 + H2O at 298.15 K, J. Chem. Eng. Data, 61, 1749–1755 (2016). DOI: 10.1021/acs.jced.5b00932

J. Shah, M. Rasul Jan, Adnan, Catalytic activity of alumi-num impregnated catalysts for the degradation of waste polystyrene, Int. J. El. Commun. Eng., 8, 83–89 (2014). DOI: 10.5281/zenodo.2666243

B. Pacewska, M. Keshr, Thermal transformations of alu-minium nitrate hydrate, Thermochim. Acta, 385, 73–80 (2002).

DOI: https://doi.org/10.1016/S0040-6031(01)00703-1

E. Karimi Saeidabadi, T. Ebadzadeh, E. Salahi, Prepara-tion of mullite from alumina/aluminum nitrate and kaolin clay through spark plasma sintering process, Ceram. Int., 44, 21053–21066 (2018).

DOI: https://doi.org/10.1016/j.ceramint.2018.08.142

C. Xueliang, Z. Yunfeng, T. Meng, D. Zhengping, Novel yolk–shell-structured Fe3O4@γ-AlOOH nanocomposite modified with Pd nanoparticles as a recyclable catalyst with excellent catalytic activity, Appl. Surf. Sci., 416, 103–111 (2017).

DOI: https://doi.org/10.1016/j.apsusc.2017.04.048

S. K. Sahoo, M. Tripathy, G. Hota, In-situ functionaliza-tion of GO sheets with AlOOH-FeOOH composite nano-rods: An eco-friendly nanoadsorbent for removal of toxic arsenate ions from water, J. Environ. Chem. Eng., 7, 103357 (2019).

DOI: https://doi.org/10.1016/j.jece.2019.103357

D. Mishra, S. Anand, R. K. Panda, R. P. Das, Effect of anions during hydrothermal preparation of boehmites, Mater. Lett., 53, 133–137 (2002).

DOI: https://doi.org/10.1016/S0167-577X(01)00461-X

M. Abdollahifar, M. Hidaryan, P. Jafari, The role anions on the synthesis of AlOOH nanoparticles using simple solvothermal method, Bol. Soc. Esp. Ceram. V., 57, 66–72 (2018). DOI: https://doi.org/10.1016/j.bsecv.2017.06.002

G. Wei, J. Qu, Y. Zheng, T. Qi, Q. Guo, B. Han, H. Zhao, Crystallization behaviors of bayerite from sodium chromate alkali solutions, T. Nonferr. Metal Soc., 24, 3356–3365 (2014).

DOI: https://doi.org/10.1016/S1003-6326(14)63477-4

W. Hernández Muñoz, J. Serrato Rodríguez, J. Muñoz Saldaña, J. Zárate Medina, Synthesis of lanthanum alumi-nate by reverse chemical precipitation using pseu-doboehmite as alumina precursor, Appl. Radiat. Isotopes, 117, 96–99 (2016).

DOI: https://doi.org/10.1016/j.apradiso.2016.01.026

W. Tao, H. Zhong, X. Pan, P. Wang, H. Wang, L. Huang, Removal of fluoride from wastewater solution us-ing Ce-AlOOH with oxalic acid as modification, J. Haz-ard Mater. 384, 121373 (2020).

DOI: https://doi.org/10.1016/j.jhazmat.2019.121373

M. Milanović, Z. Obrenović, I. Stijepović, L. M. Nikolić, Nanocrystalline boehmite obtained at room temperature, Ceram. Int., 44, 12917–12920 (2018).

DOI: https://doi.org/10.1016/j.ceramint.2018.04.103

S. Li, H. He, Q. Tao, Y. Xi, A. Chen, S. Ji, C. Zhang, Y. Yang, J. Zhu, Transformation of boehmite into 2:1 type layered aluminosilicates with different layer charges under hydrothermal conditions, Appl. Clay Sci., 181, 105207 (2019).

DOI: https://doi.org/10.1016/j.clay.2019.105207

L. H. Chagas, G. S. G. De Carvalho, R. A. S. San Gil, S. S. X. Chiaro, A. A. Leitao, R. Diniz, Obtaining aluminas from the thermal decomposition of their different precur-sors: An 27Al MAS NMR and X-ray powder diffraction studies, Mater. Res. Bull., 49, 216–222 (2014).

DOI: https://doi.org/10.1016/j.materresbull.2013.08.072

W. Lueangchaichaweng, B. Singh, D. Mandelli, W. A. Carvalho, S. Fiorilli, P. P. Pescarmona, High surface ar-ea, nanostructured boehmite and alumina catalysts: Syn-thesis and application in the sustainable epoxidation of al-kenes, Appl. Catal. A-Gen., 571, 180–187 (2019).

DOI: https://doi.org/10.1016/j.apcata.2018.12.017

F. Yang, Q. Wang, J. Yan, J. Fang, J. Zhao, W. Shen, Preparation of High Pore Volume Pseudoboehmite Doped with Transition Metal Ions through Direct Precipi-tation Method, J. Ind. Eng. Chem. Res., 51, 15386–15392 (2012).

DOI: https://doi.org/10.1021/ie3017626

N. Xu, Zhong Liu, S. Bian, Y. Dong, W. Li, Template-free synthesis of mesoporous γ-alumina with tunable structural properties, Ceram. Int., 42, 4072–4079 (2016). DOI: https://doi.org/10.1016/j.ceramint.2015.11.079

L. Yixuan, L. Chenxia, D. Degang, D. Binb, W. Le, X. Shiqing, Properties of boehmite (γ-AlOOH) and Eu3+-doped boehmite synthesized by hydrothermal method, Optik, 154, 171–176 (2018).

DOI: https://doi.org/10.1016/j.ijleo.2017.09.093




DOI: http://dx.doi.org/10.20450/mjcce.2020.1929

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Rafael Romero Toledo, Luis M. Anaya Esparza

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.