Population Diversity of n–Alkanes in the Needle Cuticular Wax of Relicts Pinus heldreichii and P. peuce from the Scardo-Pindic Mountains
DOI:
https://doi.org/10.20450/mjcce.2020.1951Keywords:
Pinus heldreichii, P. peuce, n-alkanes, diversity, Principle component analysis (PCA), Cluster analysisAbstract
The variability of n-alkanes in the needle cuticular wax of Pinus heldreichii and P. peuce in two natural populations from the Scardo-Pindic mountains was investigated for the first time. Gas chromatography (GC) and gas chromatography/mass spectrometry (GC–MS) analyses of two-year-old needles were performed using an Agilent 7890A GC equipped with an inert 5975C XL EI/CI mass spectrometer detector (MSD) and a flame ionization detector (FID) connected by a capillary flow technology 2-way splitter with make-up. An HP-5MS capillary column was used. n-Alkanes ranged from C19 to C33. In P. heldreichii the most abundant were C23, C25 and C27 (16.3, 15.6 and 12.8% on average, respectively), while in P. peuce they were C29, C25, and C27 (16.5, 15.3 and 13.5% on average, resp.). Mid-chain and long-chain n-alkanes prevailed in both species. Principle component analysis (PCA) and Cluster analyses of five and six n-alkanes, respectively, showed divergence of the Scardo-Pindic populations from the Dinaric ones.
References
M. Vidaković, Četinjače. Morfologija i varijabilnost, JAZU i Sveučilišna naklada Liber, Zagreb, 1982.
B. Nikolić, M. Ristić, S. Bojović, V. Matevski, Z. Krivošej, P. D. Marin, Essential-oil composition of the needles collected from natural populations of Macedonian pine (Pinus peuce Griseb.) from the Scardo-Pindic moun-tain system. Chem. Biodivers., 11, 934–948 (2014). DOI: https://doi.org/10.1002/cbdv.201300343
B. Nikolić, M. Ristić, S. Bojović, Z. Krivošej, V. Matev-ski, P. D. Marin, Population variability of essential oils of Pinus heldreichii from the Scardo-Pindic Mountains Ošljak and Galičica. Chem. Biodivers., 12, 295–308 (2015). DOI: https://doi.org/10.1002/cbdv.201400135
T. G. Knight, M. A. B. Wallwork, M. Sedgley, Leaf epi-cuticular wax and cuticle ultrastructure of four Eucalyptus species and their hybrids. Int. J. Plant Sci., 165, 27–36 (2004).
DOI: https://www.jstor.org/stable/10.1086/380744
Z. S. Mitić, B. K. Zlatković, S. Č. Jovanović, J. S. Ni-kolić, B. M. Nikolić, G. S. Stojanović, P. D. Marin, Di-versity of needle n-alkanes, primary alcohols and diter-penes in Balkan and Charpathian native populations of Pinus nigra J.F. Arnold. Biochem. Syst. Ecol. 80, 46–54 (2018). http://biore.bio.bg.ac.rs/handle/123456789/2914
C. Lutz, V. Heinzmann, P. G. Gülz, Surface structures and epicuticular wax composition of spruce needles after long-term treatment with ozone and acid mist. Environ. Pollut, 64, 313–322 (1990).
DOI: https://doi.org/10.1016/0269-7491(90)90053-F
R. S. Dodd, M. M. Poveda, Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem. Syst. Ecol. 3, 1257–1270 (2003).
DOI:10.1016/S0305-1978(03)00031-0
M. Maffei, S. Badino, S. Rossi, Chemotaxonomic signif-icance of leaf wax n-alkanes in the Pinales (Coniferales). J. Biol. Res. – Thessalon. 1, 3–19. (2004).
B. Nikolić, V. Tešević, I. Đorđević, M. Jadranin, M, Todosijević, S. Bojović, P.D. Marin, Chemodiversity of nonacosan‐10‐ol and n‐alkanes in the needle wax of Pi-nus heldreichii. Chem. Biodivers. 9, 80–90 (2012a), DOI: 10.1002/cbdv.201100179
B. Nikolić, V. Tešević, I. Đorđević, M. Todosijević, M. Jadranin, S. Bojović, P. D. Marin, Population variability of nonacosan-10-ol and n-alkanes in needle cuticular waxes of Macedonian Pine (Pinus peuce Griseb.). Chem. Biodivers. 9, 1155–1165 (2012b).
DOI: 10.1002/cbdv.201100316
B. Nikolić, M. Ristić, S. Bojović, V. Matevski, Z. Krivošej, P. D. Marin, Essential-oil composition of the needles collected from natural populations of Macedonian pine (Pinus peuce Griseb.) from the Scardo-Pindic moun-tain system. Chem. Biodivers. 11, 934–948 (2014). DOI: 10.1002/cbdv.201300343
B. Nikolić, M. Ristić, S. Bojović, P. D. Marin, Popula-tion variability of essential oils of Pinus heldreichii from the Scardo-Pindic mountains. Chem. Biodivers. 12, 295–308 (2015). DOI: 10.1002/cbdv. 201400135
M. R. M. Mimura, M. L. F. Salatino, A. Salatino, J. F. A. Baumgratz, Alkanes from epicuticular waxes of Huberia species: taxonomic implications. Biochem. Syst. Ecol. 26,581–588 (1998).
DOI: https://doi.org/10.1016/S0305-1978(97)00131-2
H.Van Den Dool, P. D. Kratz, A generalization of the retention index system including linear temperature pro-grammed gas-liquid partition chromatography. J. Chromatogr. 11, 463–471 (1963).
DOI: https://doi.org/10.1016/S0021-9673(01)80947-X
M. A. Mazurek, B. R. T. Simoneit, Caracterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural and urban areas in: Identification and Analysis of Organic Pollutants in Air. (Ed.) Keith, Ann. Arbor, Science / Butterworth Publishers, Boston, 1984, pp. 353–370.
J. Poynter, G. Eglinton, Molecular composition of three sediments from Hole 717C: the Bengal Fan. J. R. Cochran and D.A.V. Stow (Eds), Proc. ODP Sci. Re-sults, 116, 1990, pp. 155–161.
E. E. Bray, E. D. Evans, Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15 (1961).
DOI: https://doi.org/10.1016/0016-7037(61)90069-2
T. K. Kuhn, E. S. Krull, A. Bowater, K. Grice, G. Gleixner, The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Org. Geochem. 41, 88–95 (2010).
DOI: https://doi.org/10.1016/j.orggeochem.2009.08.003
D. R. Oros, L. J. Standley, X. Chen, B. R. Simoneit, Epicuticular wax compositions of predominant conifers of western North America. Z. Naturforsch. C. 54, 17–24. (1999). DOI: 10.1515/znc-1999-1-205
Y. Chikaraishi, H. Naraoka, Compound-specific δ2H–δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63, 361–371 (2003).
DOI: https://doi.org/10.1016/S0031-9422(02)00749-5
B. Nikolić, M. Ristić, S. Bojović, P. D. Marin, Variability of the needle essential oils of Pinus peuce from different populations in Montenegro and Serbia, Chem. Biodivers. 5, 1377–1388 (2009).
DOI: http://dx.doi.org/10.1080/11263504.2014.1000999
M. J. Lockheart, I. Poole, P.F.Van Bergen, R.P. Evershed, Leaf carbon isotope composition and stomatal characters: important considerations for palaeoclimate re-construction. Org. Geochem. 29, 1003–1008 (1998).
DOI: https://doi.org/10.1016/S0146-6380(98)00168-5
N. C. Arens, A. H. Jahren, R. Amundson, Can C3 plants faithfully record the carbon isotopic composition of at-mospheric dioxide? Paleobiology, 26, 137–164 (2000).
DOI: https://doi.org/10.1666/0094-8373(2000)026<0137:C CPFRT>2.0.CO;2
A. Vogts, H. Moossen, F. Rommerskirchen, J. Rullkötter, Distribution patterns and stable carbon isotop-ic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem. 40, 1037–1054 (2009).
DOI:10.1016/j.orggeochem.2009.07.011
Downloads
Additional Files
- Graphical illustration of Pinus heldreichii populations. Scardo-Pindic massif: Population I: Mt. Babe; Population II. Mt. Šara; Dinaric massif: Population III: Mt. Lovćen; Population IV: Mt. Zeletin; Population V: Mt. Bjelasica; Population VI: Mts. Zlatib
- Graphical illustration of Pinus peuce populations. Scardo-Pindic massif: Population I: Mt. Galičica; Population II: Mt. Šara; Dinaric massif: Population III: Mt. Zeletin; Population IV: Mt. Sjekirica; Population V: Mt. Mokra Gora;
- Principle-component analysis of five selected n-alkanes isolated from 88 Bosnian pine-tree samples from six populations. n-Alkanes: C23, C25, C27, C28, and C29. Population I: Mt. Babe, ; Population II: Mt. Šara ; Population III: Mt. Lovćen
- Principle-component analysis of five selected n-alkanes isolated from 109 Macedonian pine-tree samples from five populations. n-Alkanes: C23, C25, C27, C28, C30 and C31. Population I: Mt. Galičica ; Population II: Mt. Šara ; Population III: Mt.
- Dendrogram based on a ‘nearest-neighbor method’ (square Euclidean distance) of the studied populations I–VI (mean values) of P. heldreichii. The numbers on the vertical axis refer to distance level, calculated on the basis of differences between populatio
- Dendrogram based on a ‘nearest-neighbor method’ (square Euclidean distance) of the studied populations I–V (mean values) of P. peuce. The numbers on the vertical axis refer to distance level, calculated on the basis of differences between population conte
- Untitled
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.