Extraction kinetic of some phenolic compounds during Cabernet Sauvignon alcoholic fermentation and antioxidant properties of derived wines

Nikolina Lisov, Aleksandar Petrovic, Uroš Čakar, Milka Jadranin, Vele Tešević, Ljiljana Bukarica-Gojković

Abstract


In this study, we estimated the usage of Cabernet Sauvignon in microvinifications, obtaining wines with increased phenolic compound content. Kinetic extraction of phenolic compounds during alcoholic fermentation was affected by maceration time (3, 5, 7, 14 and 21 days) and the addition and kinetics of enzyme preparations (EP). The highest extraction rates were observed for catechin (EXV EP – EXV enzyme preparation and CP EP – Color plus enzyme preparation) and p-hydroxybenzoic acid (Car EP - Caractere enzyme preparation). According to extraction time of the analyzed phenolic compounds, maximal values (ellagic acid, ferulic acid, chlorogenic acid, caffeic acid, naringenin, p-hydroxybenzoic acid, p-coumaric acid, protocatechuic acid, trans-resveratrol, syringic acid, vanillin, and vanillic acid) were obtained on day 15 of maceration with addition of CP EP, with exceptions of gallic acid, catechin, and myricetin. Prolonged maceration times, up to 21 days, showed the most potent DPPH free radical scavenging activity with Car EP and the highest Ferric Reducing Ability of Plasma (FRAP) values with CP EP.


Keywords


Cabernet Sauvignon; enzyme preparations; kinetic extraction; maceration time; Ultra Performance Liquid Chromatography

Full Text:

PDF

References


References

V. Maraš, T. Košmerl, V. Kodžulović, S. Šućur, A. Savović, M. Perišić, Yield and oenological potential of Montenegrin autochthonous grape varieties ʼKratošijaʼ and ʼŽižakʼ, J. Hyg. Eng. Des. 8, 158-162 (2014).

A. P. Nel, Tannins and Anthocyanins: From Their Origin to Wine Analysis – A Review. South African J. Enol. Vitic. 39(1), 1-20 (2018), DOI: http://dx.doi.org/10.21548/39-1-1503.

C. Ghanem, P. Taillandier, Z. Rizk, N. Nehme, J.P. Souchard, Y. El Rayess, Evolution of Polyphenols during Syrah Grapes Maceration: Time versus Temperature Effect, Molecules, 24, 2845 (2019), DOI: https://doi.org/10.3390/molecules24152845.

N. López, E. Puértolas, P. Hernández-Orte, I. Álvarez, J. Raso, Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times, LWT - Food Sci. Technol. 42, 1225–1231 (2009), DOI: https://doi.org/10.1016/j.lwt.2009.03.009.

J. Garrido, F. Borges, Wine and grape polyphenols - A chemical perspective, Food Res. Int. 54, 1844–1858 (2013), DOI: https://doi.org/10.1016/j.foodres.2013.08.002.

L.R. Silva, M. Queiroz, Bioactive compounds of red grapes from Dão region (Portugal): Evaluation of phenolic and organic profile, Asian Pac. J. Trop. Biomed. 6, 315–321 (2016), DOI: https://doi.org/10.1016/j.apjtb.2015.12.015.

P.B. Shi, T.X. Yue, L.L. Ai, Y.F. Cheng, J.F. Meng, M.H. Li, Z.W. Zhang, Phenolic compound profiles in grape skins of Cabernet Sauvignon, Merlot, Syrah and Marselan Cultivated in the Shacheng Area (China), South African J. Enol. Vitic. 37, 132–138 (2016), DOI: https://doi.org/10.21548/37-2-898.

Lj. Gojkovic-Bukarica, J. Markovic-Lipkovski, H. Heinle, S. Cirovic, J. Rajkovic, V. Djokic, V. Zivanovic, A. Bukarica, R. Novakovic, The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels, J. Funct. Foods, 52, 266–275 (2019), DOI: https://doi.org/10.1016/j.jff.2018.11.009.

U. Cakar, N. Grozdanic, A. Petrovic, B. Pejin, B. Nastasijevic, B. Markovic, B. Dordevic, Fruit Wines Inhibitory Activity Against α-Glucosidase. Curr. Pharm. Biotechnol. 18, 1264-1272, (2017), DOI: https://doi.org/10.2174/1389201019666180410112439.

T. Košmerl, L. Bertalanič, V, Maraš, V. Kodžulović, S. Šućur, H. Abramovič, Impact of Yield on Total Polyphenols, Anthocyanins, Reducing Sugars and Antioxidant Potential in White and Red Wines Produced from Montenegrin Autochthonous Grape Varieties, Food Sci. Technol. 1(1), 7-15 (2013), DOI: 10.13189/fst.2013.010102.

H. Kelebek, A. Canbas, S. Selli, Pectolytic Enzyme Addition on the Anthocyanin, J. Food Process. Preserv. 33, 296–311 (2008).

N. El Darra, M.F. Turk, M.A. Ducasse, N. Grimi, R.G. Maroun, N. Louka, E. Vorobiev, Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments, Food Chem. 194, 944–950 (2016), DOI: https://doi.org/10.1016/j.foodchem.2015.08.059.

M. Ljekočević, M. Jadranin, J. Stanković, B. Popović, N. Nikićević, A. Petrović, V. Tešević, Phenolic composition and DPPH radical scavenging activity of plum wine produced from three plum cultivars, J. Serb. Chem. Soc. 84(2), 141-151 (2019), DOI: https://doi.org/10.2298/JSC180710096L.

I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal. Biochem. 239, 70-76 (1996), DOI: doi.org/10.1006/abio.1996.0292.

H. Abramovič, B. Grobin, N. Poklar Ulrih , B. Cigić, Relevance and Standardization of In Vitro Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu, J. Chem. (2018), DOI: doi.org/10.1155/2018/4608405.

T. Košmerl, B. Cigić, Antioxidant potential and phenolic composition of white and red wines, Le Bulletin de l'OIV : revue technique internationale. 81, 251-259 (2008).

L. Bertalanič, T. Košmerl, N. Poklar Ulrih, B. Cigić, The influence of solvent composition on antioxidant potential of model polyphenols and red wines determined with DPPH, J. Agric. Food Chem. 60 (50), 1-28 (2012), DOI: 10.1021/jf3041512.

U. Čakar, A. Petrović, M. Živković, V. Vajs, M. Milovanović, J. Zeravik, B. Đorđević, Phenolic profile of some fruit wines and their antioxidant properties, Hem. Ind. 70 (6), 661–672 (2016), DOI: 10.2298/HEMIND150722002C.

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cationde decolorization assay, Free Radic Biol Med. 26, 1231-1237 (1999), DOI: https://doi.org/10.1016/S0891-5849(98)00315-3.

H. Tanner, H.R. Brunner, “Gentranke-Analytik,” Verlag Heller Chemie und Verwaltunsgesellschaft mbH, Germany, 1979.

H. Abramovič, T. Košmerl, N. Poklar Ulrih, B. Cigić, Contribution of SO2 to antioxidant potential of white wine, Food Chem. 174, 147–153 (2015), DOI: doi.org/10.1016/j.foodchem.2014.11.030.

N. Poklar Ulrih, R. Opara, M. Skrt, T. Košmerl, M. Wondra, V. Abram, Part I. Polyphenols composition and antioxidant potential during ‘Blaufränkisch’ grape maceration and red wine maturation, and the effects of trans-resveratrol addition, Food Chem. Toxicol. 137, 111-122 (2020), DOI: doi.org/10.1016/j.fct.2020.111122.

N. Francesca, R. Romano, C. Sannino, L. Le Grottaglie, L. Settanni, G. Moschetti, Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration, Int. J. Food Microbiol. 171, 84–93 (2014), DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.11.008.

E. Gómez-Plaza, R. Gil-Muñoz, J.M. López-Roca, A. Martínez-Cutillas, J.I. Fernández-Fernández, Phenolic Compounds and Color Stability of Red Wines: Effect of Skin Maceration Time, Am. J. Enol. Vitic. 52, 266-270 (2001).

V. Kovac, E. Alonso, M. Bourzeix, E. Revilla, Effects of several enological practices on the content of catechins and proanthocyanidins of red wines, J. Agric. Food Chem. 40, 1953-1957 (1992), DOI: https://doi.org/10.1021/jf00022a045.

A.A. Borazan, B. Bozan, The influence of pectolytic enzyme addition and prefermentative mash heating during the winemaking process on the phenolic composition of Okuzgozu red wine, Food Chem. 138, 389–395 (2013), DOI: https://doi.org/10.1016/j.foodchem.2012.10.099.

U. Čakar, N. Grozdanić, B. Pejin, V. Vasić, M. Čakar, A. Petrović, B. Đorđević, Impact of vinification procedure on fruit wine inhibitory activity against alpha-glucosidase, Food Biosci. 25, 1−7 (2018), DOI: 10.1016/j.fbio.2018.06.009.

B. Sun, A.C. Neves, T.A. Fernandes, A.L. Fernandes, N. Mateus, V. De Freitas, C. Leandro, M.I. Spranger, Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity, J. Agric. Food Chem. 59, 6550–6557 (2011), DOI: https://doi.org/10.1021/jf201383e.

V. Ivanova-Petropulos, S. Durakova, A. Ricci, G.P. Parpinello, A. Versari, Extraction and evaluation of natural occurring bioactive compounds and change in antioxidant activity during red winemaking, J. Food Sci. Technol. 53, 2634–2643 (2016), DOI: https://doi.org/10.1007/s13197-016-2235-7.

M.S. Lingua, M.P. Fabani, D.A. Wunderlin, M.V. Baroni, From grape to wine: Changes in phenolic composition and its influence on antioxidant activity, Food Chem. 208, 228–238 (2016), DOI: https://doi.org/10.1016/j.foodchem.2016.04.009.

J.M. Cvejic, S.V. Djekic, A.V. Petrovic, M.T. Atanackovic, S.M. Jovic, I.D. Brceski, L.C. Gojkovic-Bukarica, Determination of trans- and cis-resveratrol in Serbian commercial wines, J. Chromatogr. Sci. 48, 229–234 (2010), DOI: https://doi.org/10.1093/chromsci/48.3.229.

P. Ribereau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology Volume 2. The Chemistry of Wine Stabilization and Treatments (2nd ed.), Chichester: John Wiley & Sons, Ltd.,(2006), Chapter 6.

D. Raičević, Z. Božinović, M. Petkov, V. Ivanova-Petropulos, V. Kodžulović, M. Mugoša, S. Šućur, V. Maraš, Polyphenolic content and sensory profile of Montenegrin Vranac wines produced with different oenological products and maceration, Maced. J. Chem. Chem. Eng. 36 (2), (2017), DOI: 10.20450/mjcce.2017.1145.

C. Pastore, G. Allegro, G. Valentini, E. Muzzi, I. Filippetti, Anthocyanin and flavonol composition response to veraison leaf removal on Cabernet Sauvignon, Nero d’Avola, Raboso Piave and Sangiovese Vitis vinifera L. cultivars, Sci. Hortic. 218, 147–155 (2017), DOI: https://doi.org/10.1016/j.scienta.2017.01.048.

N. Kocabey, M. Yilmaztekin, A.A. Hayaloglu, Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan, J. Food Sci. Technol. 53, 3557–3565 (2016), DOI: https://doi.org/10.1007/s13197-016-2335-4.

U. Čakar, A. Petrović,B. Pejin, M. Čakar, M. Živković, V. Vajs, B. Đorđević, Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Sci. Hortic. 244, 42–49 (2019), DOI: https://doi.org/10.1016/j.scienta.2018.09.020.

D. Di Majo, M. La Guardia, S. Giammanco, L. La Neve, M. Giammanco, The antioxidant capacity of red wine in relationship with its polyphenolic constituents, Food Chem. 111, 45–49 (2008), DOI: 10.1016/j.foodchem.2008.03.037.

K. Damijanić, M. Staver, K. Kovačević Ganić, M. Bubola, I. Palman, Effects of maceration duration on the phenolic composition and antioxidant capacity of “Teran” (Vitis vinifera L.) wine, Agric. Conspec. Sci. 77, 103–107 (2012).

D. Villaño, M.S. Fernández-Pachón, A.M. Troncoso, M.C. García-Parrilla, Influence of enological practices on the antioxidant activity of wines, Food Chem. 95, 394–404 (2006), DOI: https://doi.org/10.1016/j.foodchem.2005.01.005.

E. Maletić, J.K. Kontić, D. Preiner, A. Jeromel, C.D. Patz, H. Dietrich, Anthocyanin profile and antioxidative capacity of some autochthonous Croatian red wines, J. Food Agric. Environ. 7, 48–51 (2009).

K.L. Sacchi, L.F. Bisson, D.O. Adams, A review of the effect of winemaking techniques on phenolic extraction in red wines, Am. J. Enol. Vitic. 56, 197–206 (2005).

U. Vrhovsek, A. Vanzo, J. Nemanic, Effect of red wine maceration techniques on oligomeric and polymeric proanthocyanidins in wine, cv. Blaufränkisch, Vitis, 41(1), 47-51 (2002).




DOI: http://dx.doi.org/10.20450/mjcce.2020.2060

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Nikolina Lisov, Aleksandar Petrovic, Uroš Čakar, Milka Jadranin, Vele Tešević, Ljiljana Bukarica-Gojković

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.