Corrosion protection of tin by some carboxylic acids in sodium chloride solution


  • Ivana Škugor Rončević Department of General and Inorganic Chemistry Faculty of Chemistry and Technology University of Split Croatia
  • Nives Vladislavić Department of General and Inorganic Chemistry Faculty of Chemistry and Technology University of Split Croatia
  • Marijo Buzuk Department of General and Inorganic Chemistry Faculty of Chemistry and Technology University of Split Croatia
  • Maša Buljac Department of Environmental Chemistry Faculty of Chemistry and Technology University of Split Croatia
  • Anđela Lukin Faculty of Chemistry and Technology University of Split Croatia



tin, corrosion inhibition, carboxylic acids, electrochemical methods


Tin is a moderately corrosion resistant material that is widely used in tinplate for food beverages. However, despite its excellent corrosion resistance, the presence of oxidizing agents enhances tin dissolution. Dissolution of metallic tin, especially from the inside of a can body into the food content has a major influence on the food quality and may cause toxicological effects. To overcome the problem, different chemical compounds are added. The most utilized inhibitors in the food industry are nitrites and nitrates well-known as hazardous to health. The present study aimed to investigate the influence of carboxylic acids on the corrosion resistance of tin since they are present in fruit juices and different foodstuffs. The corrosion protection efficiency of the carboxylate coatings was investigated in a sodium chloride solution using electrochemical and spectroscopic techniques. The structural characteristics of the surface coatings were investigated using the FTIR spectroscopy and optical microscope.


B. E. Amitha Rani, B. B. J. Basu, Review Article: Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview, Int. J. Corros., 1-15 (2012), DOI:

A. Sahaya Raja, S. Rajendran, J. Sathiyabama, P. Angel, Corrosion Control by Aminoacetic acid (Glycine) an Overview, Int. J. Innov. Res. Sci. Eng. Technol. 3, 11455-11467 (2014),

L. Vrsalović, S. Gudić, D. Gracić, I. Smoljko, I. Ivanić, M. Kliškić, E. E. Oguzie, Corrosion Protection of Copper in Sodium Chloride Solution using Propolis, Int. J. Electrochem. Sci. 13, 2102-2117 (2018), DOI:

M. Metikoš-Huković, R. Babić, I. Škugor Rončević, Z. Grubač, Surface Modifications of the Mg Alloy by Self-Assembled Monolayers of Fatty Acids, ECS Trans. 41, 81-91 (2012), DOI: 10.1149/1.3692438

Z. Grubač, I. Skugor Rončević, M. Metikoš-Huković, R. Babić, M. Petravić, R. Peter, Surface Modification of Biodegradable Magnesium Alloys, J. Electrochem. Soc. 159, C253-C258 (2012), DOI: 10.1149/2.047206jes

I. Škugor Rončević, N. Vladislavić, M. Buzuk, Surface Modifcations of the Biodegradable Magnesium Based Implants with Self-Assembled Monolayers Formed by T-BAG Method, Acta Chim. Slov. 65, 1-11 (2018), DOI:

S. A. Umoren, U. M. Eduok, Application of carbohydrate polymers as corrosion inhibitors for metal substrates in diferent media: a review, Carbohyd. Polym. 140, 314-341 (2016), DOI:

I. Obot, N. Obi-Egbedi, S. Umoren, Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl, Corros. Sci. 51, 1868-1875 (2009),


H. Elgahawi, M. Gobara, A. Baraka, W. Elthalabawy, Eco-friendly Corrosion Inhibition of AA2024 in 3.5% NaCl Using the Extract of Linum usitatissimum Seeds, J. Bio. Tribo. Corros. 3:55, 1-13 (2017), DOI:

S. Blunden, T. Wallace, Tin in canned food: a review and understanding of occurrence and effect, Food Chem. Toxicol. 41, 1651-1662 (2003). DOI: 10.1016/s0278-6915(03)00217-5

R. M. El-Sherif, W. A. Badawy, Mechanism of Corrosion and Corrosion Inhibition of Tin in Aqueous Solutions Containing Tartaric Acid, Int. J. Electrochem. Sci. 6, 6469-6482 (2011), DOI:

B. F. Gannetti, P. T. Sumodjo, T. Rabockai, A. Souza, J. Barboza, Electrochemical dissolution and passivation of tin in citric acid solution using electron microscopy techniques, Electrochim. Acta 37, 143-148 (1992), DOI:

A. Albu-Yaron, A. Feigin, Effect of growing conditions on the corrosivity and ascorbic acid retention in canned tomato juice, J. Sci. Food Agric. 59, 101-108 (1992), DOI:

M. A. Quraishi, F. A. Ansari, D. Jamal, Corrosion inhibition of tin by some amino acids in citric acid solution, Indian J. Chem. Techn. 11, 271-274 (2004),

K. Galić, M. Pavić, N. Ciković, The effect of inhibitors tin in sodium on the corrosion chloride of solution, Corros. Sci. 36, 785-795 (1994), DOI:

C. M. V. B. Almeida, T. Rabockai, B. F. Giannetti, Inhibiting effect of citric acid on the pitting corrosion of tin, J. Appl. Electrochem. 29, 123-128 (1999), DOI:

P. E. Avarez, S. B. Ribotta, M. E. Folker, C. A. Gervasi, J. R. Vilche, Potentiodynamic behaviour of tin in different buffer solutions, Corros. Sci. 44, 49-65 (2002), DOI:

M. F. Mohd Yusoff, M. R. Abdul Kadir, N. Iqbal, M. A. Hassan, R. Hussain, Dipcoating of poly(ε-caprolactone)/hydroxyapatite composite coating on Ti6Al4V for enhanced corrosion protection, Surf. & Coat. Technol. 245, 102-107 (2014), DOI:

B. A. Boukamp, A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems, Solid State Ion. 20, 31-44 (1986), DOI:

J. R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, New York, John Wiley & Sons Inc, 1987, pp. 301, DOI:

Z. Lukasc, Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits, J. Electroanal. Chem. 464, 68-75 (1999), DOI:

J. R. Macdonald, Power-law exponents and hidden bulk relation in the impedance spectroscopy of solids, J. Electroanal. Chem. 378, 17-29 (1994), DOI:

G. Zorn, I. Gotman, E. Y. Gutmanas, R. Adadi, G. Salitra, C. N. Sukenik, Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self-Assembled Monolayer, Chem. Mater. 17, 4218-4226 (2005), DOI:

N. Soraya, D. Rayenne, M. Boulanouar, O. Rabah, Structure-Corrosion Inhibition Performance Relationship: Application to Some Natural Free Acids and Antioxidants, Port. Electrochimica Acta, 36, 23-34 (2018), DOI:

A. N. Grassino, J. Halambek, S. Djaković, S. Rimac Brnčić, M. Dent, Z. Grabarić, Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor, Food Hydrocoll. 52, 265-274 (2016), DOI:

M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc. 109, 3559-3568 (1987), DOI:

A. Raman, E. Gawalt, Self-Assembled Monolayers of Alkanoic Acids on the Native Oxide Surface of SS316L by Solution Deposition, Langmuir 23, 2284-2288 (2007), DOI:

M. A. Szymański, M. J. Gillan, The energetics of adsorption of HCOOH on the MgO(100) surface, Surf. Sci. 367, 135-148 (1996), DOI:

M. S. Lim, K. Feng, X. Chen, N. Wu, A. Raman, J. Nightingale, E. S. Gawalt, D. Korakakis, L. A. Hornak, A. T. Timperman, Adsorption and Desorption of Stearic Acid Self-Assembled Monolayers on Aluminum Oxide, Langmuir 23, 2444-2452 (2007), DOI:

S. Martinez, L. Valek, I. Stipanović Oslaković, Adsorption of Organic Anions on Low-Carbon Steel in Saturated Ca(OH)2 and the HSAB Principle, J. Electrochem. Soc. 154, C671-C677 (2007), DOI:

Ž. Petrović, M. Metikoš-Huković, R. Babić, Potential-assisted assembly of 1-dodecanethiol on polycrystalline gold, J. Electroanal. Chem. 623, 54-60 (2008), DOI:

A. M. Ahmed, Y. A. Aggour, M. A. Shreadah, M. Darweesh, E. Sallam, Anodic Corrosion of Copper in Presence of Polymers, Int. J. Appl. Eng. Res. 2, 221-230 (2014), DOI:




How to Cite

Škugor Rončević, I., Vladislavić, N., Buzuk, M., Buljac, M., & Lukin, A. (2020). Corrosion protection of tin by some carboxylic acids in sodium chloride solution. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 167–176.