Optimization and kinetic study of anthraquinone dye removal from colored wastewater using soybean seed as a source of peroxidase for environmental welfare


  • Milica Milan Svetozarević Innovation Center Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Nataša Šekuljica Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade
  • Zorica Knežević-Jugović University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade
  • Dušan Mijin University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade




soybean seed peroxidase, Acid Violet 109, ping pong bi bi, dye treatment


As water contamination emerges as a serious threat to the environment, ventures for cleaner and sustainable solutions are continuously being developed. The present study investigates the ability of crude peroxidase extract from soybean seeds to degrade the anthraquinone dye Acid Violet 109. The influence of the essential parameters pH, dye concentration, hydrogen peroxide dosage, and temperature were inspected. The enzyme had 81.9 % biodegradation at pH 4 in 30 min with 0.1 U peroxidase, 40 mg/l dye concentration, and 1 mM hydrogen peroxide. Considering that substrate concentration can cause reaction inhibition, a kinetic study was performed. Kinetic data fitting using bisubstrate kinetics with a substrate inhibition model revealed the high inhibitory effect of the dye, which was confirmed by the inhibition constant, 7.123·10–5 mM. Alongside the inhibition constant values, the Ping-Pong Bi-Bi model gave the maximum rates 15.788 and 14.321 mM/min for hydrogen peroxide and dye inhibition, respectively.


P. M. Vitousek, H. A. Mooney, J. Lubchenco, J. M. Melillo, Human domination of earth’s ecosystems, Science, 277, 494–499 (1997).

DOI: 10.1126/science.277.5325.494

W. V. Reid, H. A. Mooney, A. Cropper, D. Capistrano, S. R. Carpenter, K. Chopra, P. Dasgupta, T. Dietz, A. K. Duraippah, Ecosystems and Human Well-being: Biodiversity Synthesis. A report of the Millennium Ecosystem Assessment, 2005.

https://www.millenniumassessment.org/documents/document.356.aspx.pdf, accessed March 2020.

M. Meybeck, Global analysis of river systems: From Earth system controls to Anthropocene syndromes, Philos. Trans. R. Soc. Lond B BiolSci., 29, 1935–1955 (2003). DOI: 10.1098/rstb.2003.1379

FAO, The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) —Ma-naging Systems at Risk. Food and Agriculture Organi-zation of the United Nations, Rome and Earthscan, London, 2011.

A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeter. Biodegr., 59, 73–84 (2007). DOI:10.1016/j.ibiod.2006.08.006

M. A. Hassan, A. E. Nemr, Health and environmental impact of dyes: mini review, American J. Environ. Sci. Eng., 3, 64–67 (2017).

DOI: 10.11648/j.ajese.20170103.11

R. Jamee, R. Siddique, Biodegradation of synthetic dyes of textile effluent by microorganisms: an environ¬mentally and economically sustainable approach, Eur. J. Microbiol. Immunol., 9, 114–118 (2019).

DOI: 10.1556/1886.2019.00018

Q. Husain, M. Husain, Y. Kulshrestha, Remediation and treatment of organopollutants mediated by peroxidases: a review, Crit. Rev. Biotechnol., 29, 94–119 (2009).

DOI: 10.1080/07388550802685306

R. S. Juang, F. C. Wu, R. L. Tseng, Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption, Colloids Surf. A, 201, 191–199 (2002). DOI: 10.1016/S0927-7757(01)01004-4

N. K. Amin, Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith, Desalination, 223, 152–161 (2008). DOI: 10.1016/j.desal.2007.01.203

R. L. Tseng, F. C. Wu, R. S. Juang, Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons, Carbon, 41, 487–495 (2003).

DOI: 10.1016/S0008-6223(02)00367-6

S. B. Wang, Z. H. Zhua, A. Coomes, F. Haghseresht and G. Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, J. Colloid Interface Sci., 284, 440–446 (2005).

DOI: 10.1016/j.jcis.2004.10.050

N. H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec and T. H. Nguyen, Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications, Carbon, 44, 2569–2577 (2006), DOI: 10.1016/j.carbon.2006.05.048

S. Irudhaya Raj, A. Jaiswal, I. Uddin, Tunable porous silica nanoparticles as a universal dye adsorbent, RSC Adv., 9, 11212 (2010). DOI: 10.1039/C8RA10428J

X. Huang, S. Sun, B. Gao, Q.Yue, Y. Wang, Q. Li, Coagulation behavior and floc properties of compound bioflocculant–polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment, J. Environ. Sci., 30, 215–222 (2015). DOI: 10.1016/j.jes.2014.07.033

S. S. Thakur, S. Choubey, Use of tannin based natural coagulants for water treatment: An alternative to inorganic chemicals, Int. J. ChemTech Res., 6, 3628–3634 (2014).

A. Mishra, M. Bajpai, Flocculation behavior of model textile wastewater treated with a food grade polysaccharide, J. Hazard. Mater., 118, 213–217 (2015). DOI: 10.1016/j.jhazmat.2004.11.003

E. M. Cuerda-Correa, M. F. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An Overview. Water, 12, 102 (2020). DOI: 10.3390/w12010102

M. E. Lovato, M. L. Fiasconaro, C. A. Martín, Degradation and toxicity depletion of RB19 anthra-quinone dye in water by ozone-based technologies, Water Sci Technol., 75, 813–822 (2017).

DOI: https://doi.org/10.2166/wst.2016.501

S. Kliś, M. Thomas, K. Barbusiński, K. Gołombek, Ł. Krzemiński, M. Chyc, Removal of azo dye acid red 27 from aqueous solutions using classical and modified Fenton reagent with zero-valent iron, Fibre Text East Eur., 27, 100–106 (2019).

DOI: 10.5604/01.3001.0013.2908

H. Wang, J. Q. Su, X.W. Zheng, Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3, Int Biodeterior Biodegrad., 63, 395–399 (2009). DOI: 10.1016/j.ibiod.2008.11.006

J. Forss, M. V. Lindh, J. Pinhassi, U. Welander, Microbial biotreatment of actual textile wastewater in a continuous sequential rice husk biofilter and the microbial community involved, Plos One, 12, 0170562 (2017). DOI: 10.1371/journal.pone.0170562

J. Wang, Y. Zhou, P. Li, H. Lu, R. Jin, G. Liu, Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB, Appl. Biochem. Biotechnol., 175, 3162–3172 (2015). DOI: 10.1007/s12010-015-1490-9

S. Ren, J. Guo, G. Zeng, G. Sun. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain, Appl. Microbiol. Biotechnol., 72, 1316–1321 (2006).

DOI: 10.1007/s00253-006-0418-2

X. H. Xie, N. Liu, B. Yang, Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing. Int. Biodeterior. Biodegrad. 111, 14–21 (2016). DOI: 10.1016/j.ibiod.2016.04.004

M. M. Al-Ansari, B. Saha, S. Mazloum, K. E. Taylor, J. K. Bewtra, N. Biswas, Soybean peroxidase applications in wastewater treatment. In: Soybeans: Cultivation, Uses and Nutrition, Jason E. Maxwell (Ed.), Nova Science Publishers Inc., 2011, 189–221.

S. Shen, Q. Wang, J. Shu, L. Ma, L. Chen, Y. Xu, Optimization of horseradish peroxidase catalytic degradation for 2-methyl-6-ethylaniline removal using response surface methodology, Water, 11, 1093 (2019). DOI: 10.3390/w11051093

R. Ahirwar, J. G. Sharma, B. Singh, K. Kumar, P. Nahar, S. Kumar, A simple and efficient method for removal of phenolic contaminants in wastewater using covalent immobilized horseradish peroxidase, J. Mat. Sci. Engin. B, 7, 27–38 (2017). DOI: 10.17265/2161-6221/2017.1-2.004

M. Wagner, J. A. Nicell, Evaluation of horseradish peroxidase for the treatment of estrogenic alkylphenols, Water. Qual. Res. J. Canada, 40, 145–154 (2005).

DOI: 10.2166/wqrj.2005.017

C. Ely, M. L. B. Magalhães, C. H. L. Soares, E. Skoronski, Optimization of phenol removal from biorefinery effluent using horseradish peroxidase, J. Environ. Eng., 143, 04017075 (2017).

DOI: 10.1061/(ASCE)EE.1943-7870.0001279

N. Šekuljica, N. Prlainović, S. Jakovetić, S. Grbavčić, N. Ognjanović, Z. Knežević-Jugović, D. Mijin, Removal of anthraquinone dye by cross-linked enzyme aggregates from fresh horseradish extract, Clean - Soil Air Water, 44, 891–900 (2016). DOI: 10.1002/clen.201500766

A. G. Marangoni, E. D. Brown, D. W. Stanley, R. Y. Yada, Tomato Peroxidase: Rapid Isolation and Partial Characterization, J. Food. Sci., 54, 1269–1271 (1989). DOI:10.1111/j.1365-2621.1989.tb05971.x

A. A. Abbas, Extraction, Purification and charac-terization of peroxidase from cabbage (Brassica oleraceaVar), Iraqi. J. Sci., 56, 2282–2291 (2015).

X. Zhang, X. Shao, Characterisation of Polyphenol Oxidase and Peroxidase and the Role in Browning of Loquat Fruit. Czech J. Food Sci. 33, 109–117 (2015). DOI: 10.17221/384/2014-CJFS

F. Ghaemmaghami, I. Alemzadeh, S. Motamed, Seed coat soybean peroxidase: extraction and biocatalytic properties determination, Iran. J. Chem. Eng., 7, 28–38 (2010).

G. Hailu, A. Weersink, F. Cahlík, Examining the Prospects for Commercialization of Soybean Peroxidase, J. Agrobiotehcnol. Manag. Econom., 13, 263–273 (2010).

J. A. Torres, F. G. E. Nogueira, M. C. Silva, J. H. Lopes, T. S. Tavares,T. C. Ramalhoa and A. D. Correa, Novel eco-friendly biocatalyst: soybean peroxidase immobi¬lized onto activated carbon obtained from agricultural waste. RSC Adv. 7, 16460 (2017).

DOI: 10.1039/C7RA01309D

J. P. McEldoon, J. S. Dordick, Unusual thermal stability of soybean peroxidase. Biotechnol. Prog. 12, 555–558 (1996). DOI: 10.1021/bp960010x

L. G. C. Villegas, D. Mukherjee, K. E. Taylor, N. Biswas, Enzymatic treatment with soybean peroxidase of an azodye, direct black 38, and an azo-dye precursor, 4- chloro-o-toluidine. CSCE 2018 Annual Conference: Building Tomorrow’s Society in Fredericton, Canada, 2018.

H. Wright, J. A. Nicell, Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresour. Technol., 70, 69–79 (1999).

DOI: 10.1016/S0960-8524(99)00007-3

L. Ali, R. Algaithi, H. M. Habib, U. Souka, M. A. Rauf, S. S. Ashraf, Soybean peroxidase-mediated degradation of an azo dye – a detailed mechanistic study. BMC Biochem. 14, 35 (2013). DOI: 10.1186/1471-2091-14-35

F. Alyas, M. Z. Anjum, K. Rehman, Extraction and purification from soybean seeds, Pak. J. Agri. Sci. 39, 326–329 (2002).

S. Rathnamsamy, R. Singh, R. Auxilia, B. N. Vedhahari, Extraction of peroxidase from various plant sources and its biodegradation studies on phenolic compounds. Biotech. Ind. J. 9, 160–165 (2014).

A. S. Mahmoud, A. E. Ghaly, S. L. Brooks, Influence of temperature and pH on the stability and colorimetric measurement of textile dyes, Am. J. of Biotechnol. Biochem., 3, 33–41 (2007).

DOI: 10.3844/ajbbsp.2007.33.41

A. Kaur, K. E. Taylor, N. Biswas, Soybean peroxidase-catalyzed degradation of a sulfonated dye and its azo-clavage product, J Chem. Technol. Biotechnol., 2020. DOI: 10.1002/jctb.6555

N. Šekuljica, N. Prlainović, A. Stevanović, M. Žuža, D. Čičkarić, D. Mijin, Z. Knežević-Jugović, Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study, Sci. World J., 37625 (2015). DOI: 10.1155/2015/371625

E. M. Mandujano, G. M. Chavez, O. V. Rosas, G. Buitron, M. A. G. Zuniga, Decolourization of Direct blue 2 by peroxidases obtained from an industrial soybean waste, Water SA, 44, 204–210 (2018).

DOI: 10.4314/wsa.v44i2.06

E. Routoula, S. V. Patwardhan, Degradation of anthra-quinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol., 54, 647–664 (2020).

DOI: 10.1021/acs.est.9b03737

M. C. Silva, J. A. Torres, L. R. Vasconcelos, P. M. B. Chagas, V. S. F. Leitao, A. D. Correa, The use of soybean peroxidase in the docolourization of Remazol brilliant blue R and toxicological evaluation of its degradation products, J. Mol. Catal. B Enzym., 89, 122–129 (2013). DOI: 10.1016/j.molcatb.2013.01.004

L. G. C. Villegas, S. Mazloum, K. E Taylor, N. Biswas, Soybean peroxidase-catalyzed treatment of azo dyes with or without Feo pretreatment, Water Environ Res., 90, 675-684 (2018).

DOI: 1 0.2175/106143017X15131012153149

T. Chiong, S. Y. Lau, Z. H. Lek, B. Koh, M. K. Danquah, Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzyme, J. Environ. Chem. Eng., 4, 2500–2509 (2016).

DOI: 10.1016/J.JECE.2016.04.030

C. Watanabe, A. Kashiwada, K. Matsuda, K. Yamada, Soybean peroxidase-catalyzed treatment and removal of BPA and bisphenol derivatives from aqueous solution, Environ. Prog. Sustain. Energy, 30, 81–91 (2011).

DOI: 10.1002/ep.10453

S. Longu, R. Medda, A. Padiglia, J. Z. Pedersen, G. Floris, The reaction mechanism of plant peroxidases, Ital. J. Biochem., 53, 42–46 (2004).




How to Cite

Svetozarević, M. M., Šekuljica, N., Knežević-Jugović, Z., & Mijin, D. (2020). Optimization and kinetic study of anthraquinone dye removal from colored wastewater using soybean seed as a source of peroxidase for environmental welfare. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 197–206. https://doi.org/10.20450/mjcce.2020.2150