Mandarin peel as an auspicious functional filler for polymer composites

Authors

DOI:

https://doi.org/10.20450/mjcce.2021.2236

Keywords:

Polymer composites, mandarin peel, recycling, antioxidant activity, volatile organic compounds

Abstract

This work describes the mandarin peel (MP) application as a waste filler for high-density polyethylene (HDPE) composites. The main goal was to investigate the impact of filler’s essential oils, which include multiple terpenes and terpenoids, on the processing, physicochemical, mechanical and thermal properties, as well as color and volatile organic compounds emissions from the composites with different filler content (1-10 wt%). At small loadings, MP can be considered an efficient filler for wood-polymer composites, enhancing their flowability, tensile strength and thermal stability. Besides, it may act as colorant and aroma compound for polymer materials, and enhances the termooxidative resistance of composites. The oxidation induction time was elongated from 20 min for HDPE up to 62 min for the composites with 10 wt% of filler. The obtained research results allow application of the MP not only in the production of highly-filled composites, but also as an additive that significantly enhances the composites’ performance at low concentrations.

References

Food wastage: Key facts and figures. http://www.fao.org/news/story/en/item/196402/icode, accessed January 2021.

M. Chandrasekaran, A. H. Bahkali, Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology, Saudi J. Biol. Sci. 20, 105–120 (2013), DOI: https://doi.org/10.1016/j.sjbs.2012.12.004

A. S. Meyer, S. M. Jepsen, N. S. Sorensen, Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace, J. Agr. Food Chem. 46, 2439–2446 (1998), DOI: https://doi.org/10.1021/jf971012f

G. S. Dhillon, S. Kaur, S. K. Brar, Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review, Renew. Sust. Energ. Rev. 27, 789–805 (2013), DOI: https://doi.org/10.1016/j.rser.2013.06.046

R. Sharma, H. S. Oberoi, G. S. Dhillon, Fruit and Vegetable Processing Waste. Agro-Industrial Wastes as Feedstock for Enzyme Production, Academic Press, Cambridge, Massachusetts, 2016. DOI: https://doi.org/10.1016/b978-0-12-802392-1.00002-2

J. A. Larrauri, P. Ruperez, B. Borroto, F. Saura-Calixto, Mango peels as a new tropical fibre: preparation and characterization, LWT-Food Sci. Technol. 29, 729–733 (1996), DOI: https://doi.org/10.1006/fstl.1996.0113

J. Monspart‐Sényi, Fruit Processing Waste Management in: Handbook of Fruits and Fruit Processing, Y. H. Hui (Ed)., Blackwell Publishing, Hoboken, New Jersey, 2006, pp. 171-186. DOI: https://doi.org/10.1002/9780470277737.ch10

J. Banerjee, R. Singh, R. Vijayaraghavan, D. MacFarlane, A. F. Patti, A. Arora, Bioactives from fruit processing wastes: Green approaches to valuable chemicals, Food Chem. 225, 10–22 (2017), DOI: https://doi.org/10.1016/j.foodchem.2016.12.093

D. Bashar, Long Term Thermo-mechanical Prediction of Banana Stem Particulate Reinforced PVC Composite as Piping Material, Pak. J. Eng. Appl. Sci. 23, 8-16 (2018).

J. Baek, H. Lee, K. Kang, K. Kim, Chemical constituents from the fruits of Citrus unshiu and their inhibitory effects on acetylcholinesterase, Maced. J. Chem. Chem. Eng. 36(1), 15-22 (2017), DOI: https://doi.org/10.20450/mjcce.2017.1139

D. Czarnecka-Komorowska, K. Wiszumirska, Zrównoważone projektowanie opakowań z tworzyw sztucznych w gospodarce cyrkularne, Polimery 65, 8-17 (2020), DOI: https://doi.org/10.14314/polimery.2020.1.2

A. Gowman, M. Picard, L. Lim, M. Misra, A. Mohanty, Fruit Waste Valorization for Biodegradable Biocomposite Applications: A Review, BioResources 14(4), 10047-10092 (2019), DOI: https://doi.org/10.15376/biores.14.4.Gowman

M. Anticona, J. Blesa, A. Frigola, M. J. Esteve, High Biological Value Compounds Extraction from Citrus Waste with Non-Conventional Methods, Foods 9, 811 (2020), DOI: https://doi.org/10.3390/foods9060811

H. D. Chapman, The mineral nutrition of citrus in: The citrus Industry II, W. Reuther, L. J. Batchelor, H. D. Webber (Eds), Univ Calif Press, California, 1968, pp. 177-289.

D. N. Tsiklauri, S. T. Khardziani, T. E. Kachlishvil, V. I. Elisashvili, Cellulase and xylanase activities of higher Basidiomycetes during bioconversion of plant raw material depending on the carbon source in the nutrient medium, Appl. Biochem. Microbiol. 35, 291-295 (1999).

A. M. Balu, V. Budarin, P. S. Shuttleworth, L. A. Pfaltzgraff, K. Waldron, R. Luque, J. H. Clark, Valorisation of Orange Peel Residues: Waste to Biochemicals and Nanoporous Materials, Chem. Sus. Chem. 5(9), 1694–1697 (2012), DOI: https://doi.org/10.1002/cssc.201200381

R. Farahmandfar, B. Tirgarian, B. Dehghan, A. Nemati, Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders, J. Food Measure. Char. 14, 862-875 (2020), DOI: https://doi.org/10.1007/s11694-019-00334-x

P. Dugo, I. Bonaccorsi, C. Ragonese, M. Russo, P. Donato, L. Santi, L. Mondello, Analytical characterization of mandarin (Citrus deliciosa Ten.) essential oil, Flavour Frag. J. 26(1), 34–46 (2010), DOI: https://doi.org/10.1002/ffj.2014

C. D. Frizzo, D. Lorenzo, E. Dellacassa, Composition and Seasonal Variation of the Essential Oils from Two Mandarin Cultivars of Southern Brazil, J. Agr. Food Chem. 52(10), 3036–3041 (2004), DOI: https://doi.org/10.1021/jf030685x

L. Danielski, G. Brunner, C. Schwänke, C. Zetzl, H. Hense, J. P. M. Donoso, Deterpenation of mandarin (Citrus reticulata) peel oils by means of countercurrent multistage extraction and adsorption/desorption with supercritical CO2, J. Supercrit. Fluid. 44(3), 315–324 (2008), DOI: https://doi.org/10.1016/j.supflu.2007.09.007

J. Fehlberg, C. Lee, L. M. Matuana, E. Almenar, Orange peel waste from juicing as raw material for plastic composites intended for use in food packaging, J. Appl. Polym. Sci, 137, 48841 (2020), DOI: https://doi.org/10.1002/app.48841

K. A. Iyer, L. Zhang, J. M. Torkelson, Direct Use of Natural Antioxidant-rich Agro-wastes as Thermal Stabilizer for Polymer: Processing and Recycling, ACS Sust. Chem. Eng. 4(3), 881–889 (2015), DOI: https://doi.org/10.1021/acssuschemeng.5b00945

S. Rathinavel, S. S. Saravanakumar, Development and Analysis of Poly Vinyl Alcohol/Orange peel powder biocomposite films, J. Natur. Fiber. In Press (2020), DOI: https://doi.org/10.1080/15440478.2019.1711285

S. Ojha, G. Raghavendra, S. K. Acharya, P. Kumar, Fabrication and Study of Mechanical Properties of Orange PEEL Reinforced Polymer Composite, Casp. J. Appl. Sci. Res. 1, 190-194 (2012).

S. Banisadr, H. Asempour, Effect of ferric salt of orange peel solid fraction on photo-oxidation and biodegradability of LDPE films. Iran. Polym. J. 21(7), 463–471 (2012) DOI: https://doi.org/10.1007/s13726-012-0050-1

R. Muhammad Khan, A. Mushtaq, A. Israr, A. Nafees, Comparative Study for Melt Flow Index of High Density Polyethylene, Low Density Polyethylene and Linear Low Density Polyethylene, Pak. J. Eng. Appl. Sci. 24(1), 18-25 (2019).

International Commission on Illumination. Recommendations on uniform color spaces, color-difference equations, psychometric color terms. Bureau central de la C.I.E., Paris, France, 1978.

E. Bociaga, M. Trzaskalska, Influence of polymer processing parameters and coloring agents on gloss and color of acrylonitrile-butadiene-styrene terpolymer moldings, Polimery 61, 544–550 (2016), DOI: https://doi.org/10.14314/polimery.2016.544

R. W. G. Hunt, The Reproduction of Colour (6th ed.), Wiley, Chichester, UK, 2004.

A. Hejna, M. Barczewski, K. Skórczewska, J. Szulc, B. Chmielnicki, J. Korol, K. Formela, Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder, J. Clean. Prod. In Press (2020), DOI: https://doi.org/10.1016/j.jclepro.2020.124839

E. Massold, C. Bahr, T. Salthammer, S. K. Brown, Determination of VOC and TVOC in air using thermal desorption GC–MS—practical implications for test chamber experiments, Chromatographia 62, 75–85 (2005), DOI: https://doi.org/10.1365/s10337-005-0582-z

M. Marć, Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use, Sci. Total Environ. 720, 137485 (2020), DOI: https://doi.org/10.1016/j.scitotenv.2020.137485

M. Marć, B. Zabiegała, An investigation of selected monoaromatic hydrocarbons released from the surface of polystyrene lids used in coffee-to-go cups, Microchem. J. 133, 496–505 (2017), DOI: https://doi.org/10.1016/j.microc.2017.04.015

M. Nohr, W. Horn, K. Wiegner, M. Richter, W. Lorenz, Development of a material with reproducible emission of selected volatile organic compounds - m-Chamber study, Chemosphere 107, 224-229 (2014), DOI: https://doi.org/ 10.1016/j.chemosphere.2013.12.047

B. Zabiegała, C. Sarbu, M. Urbanowicz, J. Namieśnik, A comparative study of the performance of passive samplers, J. Air Waste Manage. Assoc. 61, 260-268 (2011), DOI: https://doi.org/10.3155/1047-3289.61.3.260

M. Marć, B. Zabiegała, J. Namieśnik, Application of passive sampling technique in monitoring research on quality of atmospheric air in the area of Tczew, Poland, Int. J. Anal. Chem. 94, 151–167 (2014), DOI: https://doi.org/ 10.1080/03067319.2013.791979

V. Hristov, J. Vlachopoulos, Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites, Polym. Compos. 29(8), 831–839 (2008), DOI: https://doi.org/10.1002/pc.20455

M. Barczewski, O. Mysiukiewicz, J. Szulc, A. Kloziński, Poly(lactic acid) green composites filled with linseed cake as an agricultural waste filler. Influence of oil content within the filler on the rheological behavior, J. Appl. Polym. Sci. 136, 47651 (2019), DOI: https://doi.org/10.1002/app.47651

O. Mysiukiewicz, P. Kosmela, M. Barczewski, A. Hejna, Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder, Materials 13, 1242 (2020), DOI: https://doi.org/10.3390/ma13051242

M. R. Gent, M. Menendez, J. Toraño, I. Diego, Recycling of plastic waste by density separation: prospects for optimization, Waste Manage. Res. 27(2), 175–187 (2009), DOI: https://doi.org/10.1177/0734242x08096950

K. Salasinska, M. Polka, M. Gloc, J. Ryszkowska, Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based composites, Polimery 61, 255–265 (2016), DOI: https://doi.org/10.14314/polimery.2016.255

V. Srebrenkoska, G. Bogoeva Gaceva, D. Dimeski, Biocomposites based on polylactic acid and their thermal behavior after recycling, Maced. J. Chem. Chem. Eng. 33(2), 277-285 (2014), DOI: https://doi.org/10.20450/mjcce.2014.479

J. Jin, S. J. Chen, J. Zhang, Non-isothermal crystallization kinetics of partially miscible ethylene-vinyl acetate copolymer/low density polyethylene blends, eXPRESS Polym. Lett. 4, 141–152 (2010), DOI: https://doi.org/10.3144/expresspolymlett.2010.19

E. L. Heeley, D. J. Hughes, P. G. Taylor, A. R. Bassindale, Crystallization and morphology development in polyethylene–octakis(n-octadecyldimethylsiloxy)octasilsesquioxane nanocomposite blends, RSC Adv. 5(44), 34709–34719 (2015), DOI: https://doi.org/10.1039/c5ra03267a

H. Kaczmarek, M. Chylińska, B. Królikowski, E. Klimiec, D. Bajer, J. Kowalonek, Influence of glass beads filler and orientation process on piezoelectric properties of polyethylene composites, J. Mater. Sci-Mater. El. 30, 21032–21047 (2019), DOI: https://doi.org/10.1007/s10854-019-02473-9

R. H. Elleithy, I. Ali, M. A. Ali, S. M. Al-Zahrani, High density polyethylene/micro calcium carbonate composites: A study of the morphological, thermal, and viscoelastic properties, J. Appl. Polym. Sci. 117(4), 2413–2421 (2010), DOI: https://doi.org/10.1002/app.32142

Y. M. Kim, H. W. Lee, S. H. Lee, S. S. Kim, S. H. Park, J. K. Jeon, S. Kim, Y. K. Park, Pyrolysis properties and kinetics of mandarin peel, Korean J. Chem. Eng. 28, 2012 (2011), DOI: https://doi.org/10.1007/s11814-011-0177-3

D. B. MacDougall, M. Granov, Relationship between Ultraviolet and Visible Spectra in Maillard Reactions and CIELAB Colour Space and Visual Appearance in: The Maillard Reaction in Foods and Medicine, J. O'Brien, H. E. Nursten, J. M. Ames, M. J. C. Crabbe, J. Crabbe (Eds), Woodhead Publishing, Cambridge, 2005, pp. 160–165. DOI: https://doi.org/10.1533/9781845698447.4.160

G. Ripoll, B. Panea, P. Albertí, Visual appraisal of beef: Relationship with CIELab colour space, Itea-Informacion Tecnica Economica Agraria 108(2), 222-232 (2012), DOI: https://doi.org/10.13140/RG.2.2.25240.19201

A. Ferrer, S. Remón, A. I. Negueruela, R. Oria, Changes during the ripening of the very late season Spanish peach cultivar Calanda, Scientia Horticulturae 105(4), 435–446 (2005), DOI: https://doi.org/10.1016/j.scienta.2005.02.002

E. O. Afoakwa, A. Paterson, M. Fowler, J. Vieira, Particle size distribution and compositional effects on textural properties and appearance of dark chocolates, J. Food Eng. 87(2), 181–190 (2008), DOI: https://doi.org/10.1016/j.jfoodeng.2007.11.025

B. W. Berry, Cooked Color in High pH Beef Patties as Related to Fat Content and Cooking from the Frozen or Thawed State, J. Food Sci. 63(5), 797–800 (1998), DOI: https://doi.org/10.1111/j.1365-2621.1998.tb17903.x

A. Lattuati-Derieux, C. Egasse, S. Thao-Heu, N. Balcar, G. Barabant, B. Lavédrine, What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections, J. Cult. Herit. 14(3), 238-247 (2013), DOI: https://doi.org/10.1016/j.culher.2012.06.005

K. Curran, M. Underhill, L. T. Gibson, M. Strlic, The development of a SPME-GC/MS method for the analysis of VOC emissions from historic plastic and rubber materials, Microchem. J. 124, 909-918 (2016), DOI: https://doi.org/10.1016/j.microc.2015.08.027

B. Kułtys, K. Waląg, Application of headspace for research volatile organic compounds emitted from building materials, E3S Web of Conferences 28, 01019 (2018), DOI: https://doi.org/10.1051/e3sconf/20182801019

D. Doneva-Šapčeska, A. Dimitrovski, T. Bojadžiev, G. Milanov, B. Vojnovski, Free and potentially volatile monoterpenes in grape varieties from the Republic of Macedonia, Maced. J. Chem. Chem. Eng. 25(1), 51–56 (2006).

A. L. Fanciullino, F. Tomi, F. Luro, J. M. Desjobert, J. Casanova, Chemical variability of peel and leaf oils of mandarins, Flavour Frag. J. 21(2), 359–367 (2006), DOI: https://doi.org/10.1002/ffj.1658

Y. Qiao, B. J. Xie, Y. Zhang, Y. Zhang, G. Fan, X. L. Yao, S. Y. Pan, Characterization of Aroma Active Compounds in Fruit Juice and Peel Oil of Jinchen Sweet Orange Fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O, Molecules 13, 1333-1344 (2008), DOI: https://doi.org/10.3390/molecules13061333

M. C. Foti, K. U. Ingold, Mechanism of Inhibition of Lipid Peroxidation by γ-Terpinene, an Unusual and Potentially Useful Hydrocarbon Antioxidant, J. Agr. Food Chem. 51(9), 2758–2765 (2003), DOI: https://doi.org/10.1021/jf020993f

H. Nguyen, E. M. Campi, W. Roy Jackson, A. F. Patti, Effect of oxidative deterioration on flavour and aroma components of lemon oil, Food Chem. 112(2), 388–393 (2009), DOI: https://doi.org/10.1016/j.foodchem.2008.05.090

K. G. Fahlbusch, F. J. Hammerschmidt, J. Panten, W. Pickenhagen, D. Schatkowski, K. Bauer, D. Garbe, H. Surburg, Flavors and Fragrances in: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley‐VCH Verlag GmbH & Co, Weinheim, 2003, pp. 73-198. DOI: https://doi.org/10.1002/14356007.a11_141

C. Y. Wang, Y. W. Chen, C. Y. Hou, Antioxidant and antibacterial activity of seven predominant terpenoids, Int. J. Food Prop. 22(1), 229–237 (2019), DOI: https://doi.org/10.1080/10942912.2019.1582541

R. Torres-Martínez, Y. M. García-Rodríguez, P. Ríos-Chávez, A. Saavedra-Molina, J. E. López-Meza, A. Ochoa-Zarzosa, R. S. Garciglia, Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq, Pharmacogn Mag. 13, 875-880 (2018), DOI: https://doi.org/10.4103/pm.pm_316_17

M. L. Lota, D. de Rocca Serra, F. Tomi, J. Casanova, Chemical variability of peel and leaf essential oils of 15 species of mandarins, Biochem. Syst. Ecol. 29(1), 77–104 (2001), DOI: https://doi.org/10.1016/s0305-1978(00)00029-6

P. C. Kuo, Y. R. Liao, H. Y. Hung, C. W. Chuang, T. L. Hwang, S. C. Huang, Y. J. Shiao, D. H. Kuo, T. S. Wu, Anti-Inflammatory and Neuroprotective Constituents from the Peels of Citrus grandis, Molecules 22, 967 (2017), DOI: https://doi.org/10.3390/molecules22060967

Downloads

Published

2021-05-11

How to Cite

Hejna, A., Barczewski, M., Barczewski, M., Kosmela, P., Kosmela, P., Aniśko, J., Aniśko, J., Mysiukiewicz, O., Mysiukiewicz, O., Marć, M., & Marć, M. (2021). Mandarin peel as an auspicious functional filler for polymer composites. Macedonian Journal of Chemistry and Chemical Engineering, 40(1), 89–106. https://doi.org/10.20450/mjcce.2021.2236

Issue

Section

Polymers